Search Results for: trees and the city

Salmon in hot water

Chinook salmon in Alaska.

The activities are as follows:

Pacific salmon are important members of freshwater and ocean food webs. Salmon transport nutrients from the ocean to freshwater habitats, and traces of these nutrients can be found in everything from trees to bears! Salmon also support sport and commercial fisheries, and are used for ceremonial purposes by Native Americans. Climate change poses a threat to salmon populations by warming the waters of streams and rivers where they reproduce. To maintain healthy populations, salmon rely on cold, freshwater habitats and may go extinct as temperatures rise in coming decades. Warm temperatures can cause large salmon die-offs. However, some salmon individuals have higher thermal tolerance and are better able to survive when water temperatures rise.

Eggs used in QTL experiment

Eggs used in QTL experiment

Salmon individuals and populations may be better able to survive in warmer waters because they have certain gene variants that help them survive under these conditions. Scientists want to know whether there is a genetic basis for the variation observed in salmon’s thermal tolerance. If differences in certain genes control variation in thermal tolerance, scientists can identify the location on the genome responsible for this very important adaptation. Once identified, management agencies could then screen for these genes in populations of salmon in order to identify individuals that could better survive in a future warmer environment. Hatchery programs could also breed thermally tolerant fish in an attempt to preserve this important fish species.

Scientists working in the lab

Scientists working in the lab

To identify the genes responsible for a particular trait, scientists look for Quantitative Trait Loci (QTL). A QTL is a genetic variant that influences the phenotype of a polygenic trait, such as human height or skin color, and perhaps thermal tolerance in salmon. Scientists can find QTL by conducting experimental mattings then examining the phenotypic and genetic characteristics of the offspring. In this study, parent fish from one population of salmon, some that are tolerant to warm water and some that are not, mated and produced offspring. These offspring now had a mix of genetic backgrounds from their parents, meaning that some offspring inherited genetic variants that made them more tolerant to high temperatures and some did not. Each offspring was tested for their thermal tolerances, and had their genomes sequenced. Differences in the genome between offspring that are tolerant and those that are not reveal areas of the genome that are correlated with thermal tolerance and survival in warm water. If differences in certain genes control variation in thermal tolerance, the scientists predicted they could find regions in the salmon genome that are correlated with survival in warm water.

Featured scientists: Wesley Larson, Meredith Everett, and Jim Seeb from the University of Washington

Flesch–Kincaid Reading Grade Level = 10.9

There are two scientific papers associated with the data in this Data Nugget. The citations and PDFs of the papers are below. The lab webpage can be found here.

Check out these Stated Clearly videos to explore DNA and genes with students!

SaveSave

SaveSave

SaveSave

Growing energy: comparing biofuel crop biomass

The activities are as follows:GLBRC1

Éste Data Nugget también está disponible en Español:

Most of us use fossil fuels every day to power our cars, heat and cool our homes, and make many of the products we buy. Fossil fuels like coal, oil, and natural gas come from plants and animals that lived and died hundreds of millions of years ago – this is why they’re called “fossil” fuels! These ancient energy sources have many uses, but they also have a major problem. When we use them, fossil fuels release carbon dioxide into the atmosphere. As a greenhouse gas, carbon dioxide traps heat and warms the planet. To avoid the serious problems that come with a warmer climate, we need to transition away from fossil fuels and think of new, cleaner ways to power our world.

Biofuels are one of these alternatives. Biofuels are made out of the leaves and stems (called biomass) of plants that are alive and growing today. When harvested, the biomass can be converted into fuel. Plants take in carbon dioxide from the atmosphere to grow. It’s part of the process of photosynthesis. In that way, biofuels can create a balance between the carbon dioxide taken in by plants and what is released when burning fuels.

GLBRC2

At the Great Lakes Bioenergy Research Center, scientists and engineers work together to study how to grow plants that take in as much carbon as possible while also producing useful biofuels. Gregg is one of these scientists and he wants to find out how much biomass can be harvested from different plants like corn, grasses, trees, and even weeds. Usually, the bigger and faster a plant grows, the more biomass they make. When more biomass is grown, more biofuels can be produced. Gregg is interested in learning how to produce the most biomass while not harming the environment.

While biofuels may sound like a great solution, Gregg is concerned with how growing them may affect the environment. Biofuels plants come with tradeoffs. Some, like corn, are great at quickly growing to huge heights – but to do this, they often need a lot of fertilizer and pesticides. These can harm the environment, cost farmers money, and may even release more of the greenhouse gasses we are trying to reduce. Other plants might not grow so fast or so big, but also don’t require as many chemicals to grow, and can benefit the environment in other ways, such as by providing habitat for animals. Many of those plants are perennials, meaning that they can grow back year after year without replanting (unlike corn). Common biofuel perennials like switchgrass, Miscanthus grass, prairie grasses, and poplar trees require fewer fertilizers and pesticides to grow, and less fossil fuel-powered equipment to grow and harvest them. Because of this, perennials might be a smart alternative to corn as a source of biofuels.

Gregg out in the GLBRC

Gregg out in the WI experimental farm.

Believing in the power of perennials, Gregg thought that it might even be possible to get the same amount of biomass from perennials as is normally harvested from corn, but without using all of the extra chemicals and using less energy. To investigate his ideas, Gregg worked together with a team to design a very big experiment. The team grew many plots of biofuel plants on farms in Wisconsin and Michigan, knowing that the soils at the site in Wisconsin were more nutrient-rich and better for the plants they were studying than at the Michigan site. At each farm, they grew plots of corn, as well as five types of perennial plots: switchgrass, Miscanthus grass, a mix of prairie plant species, young poplar trees, and weeds. For five years, the scientists harvested, dried, and weighed the biomass from each plot every fall. Then, they did the math to find the average amount of biomass produced every year by each plot type at the Wisconsin and Michigan sites.

Featured scientist: Dr. Gregg Sanford from University of Wisconsin-Madison. Written with Marina Kerekes.

Flesch–Kincaid Reading Grade Level = 8.9

This Data Nugget was adapted from a data analysis activity developed by the Great Lakes Bioenergy Research Center (GLBRC). For a more detailed version of this lesson plan, including a supplemental reading, biomass harvest video and extension activities, click here.

This lesson can be paired with The Science of Farming research story to learn a bit more about the process of designing large-scale agricultural experiments that need to account for lots of variables.

For a classroom reading, click here to download an article written for the public on these research findings. Click here for the scientific publication. For more bioenergy lesson plans by the GLBRC, check out their education page.

Aerial view of GLBRC KBS LTER cellulosic biofuels research experiment; Photo Credit: KBS LTER, Michigan State University

Aerial view of GLBRC KBS LTER cellulosic biofuels research experiment; Photo Credit: KBS LTER, Michigan State University

For more photos of the GLBRC site in Michigan, click here.

logo

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

SaveSaveSaveSave

SaveSave

SaveSave

SaveSave

This is a place – the importance of conducting local research

Below we have reproduced an article by Kathryn M. Flinn from Belt Magazine. The original post can be found here.

Screen Shot 2015-03-26 at 8.55.37 AM

Like many teenagers, I could not wait to leave the place where I grew up, in western Pennsylvania. There, my family often took a walk on a nearby Rails-to-Trails path that I liked to call the Trail of Ecological Destruction. This former railroad bed lined with invasive shrubs crosses creeks turned orange by acid mine drainage, passes the sewage treatment plant and the recycling center, and ends at a coal-fired power plant that releases more sulfur dioxide than any other power plant in the nation. I wanted to hike the Appalachian Trail, not this devastated landscape.

But, after years of working as an ecologist, I have come to realize that grim terrain like this holds endless ecological interest. I recently took a position as a biology professor near Cleveland, and I’m fully confident that ecological research in the immediate region can sustain a career’s worth of curiosity. But I choose to do local ecology for another compelling reason — I have found that the local, lived-in landscape actually works best as a tool for helping people discover and value the environment. I do local ecology not because it’s cheap, not because it’s convenient, but because it has unique educational value.

Any college worth its salt has a Study Abroad office. Just once, I would like to direct a student to the Study Our Home office.

Yet studying ecology in the Rust Belt clearly has a public relations problem. Students, parents, administrators, and funders often fail to understand the appeal of local ecology. Even some ecologists, with their focus on biological diversity, tend to ignore the local in favor of places seen as globally significant or simply exotic. In fact, it is surprisingly easy to earn a biology degree without once interacting with organisms in a local habitat.

Any college worth its salt has a Study Abroad office. Just once, I would like to direct a student to the Study Our Home office. After all, the word “ecology” means the study of home. We have biology courses where students spend half a semester studying the natural history of Ecuador and half a semester photographing blue-footed boobies. What might happen if students spent an equal amount of time immersing themselves in their own landscapes?

To begin to focus attention on the local landscape, I realized that I need to be able to recognize, articulate, and communicate the specific lessons of local ecology. What can students learn locally better than anywhere else? What exactly am I teaching when I teach ecology in urban wastelands, wetland restorations, the humblest of parks, or wherever is nearest to hand?

By teaching ecology in a CVS parking lot, I send the same message: This is a place worth noticing, a place of ecological interest.

One late spring, I had planned a pollination ecology lab, but no native plants were flowering yet. So I took my students to a CVS parking lot, where a hedge of ornamental quince bushes had a pink riot of flowers mobbed by bees. After some urging, they set to work with their field notebooks, hand lenses, and butterfly nets. What is the difference if I teach pollination ecology in a rainforest in Costa Rica or in a CVS parking lot? Students learn the same observation skills and pollination ecology techniques. The same ecological principles pertain. The difference is that, to get to the rainforest, students have endured a six-hour flight and likely a harrowing bus ride. They have paid thousands of dollars and donned their technical polyester zip-off pants. All of this has communicated to them that what they are about to see is worth paying attention to. By teaching ecology in a CVS parking lot, I send the same message: This is a place worth noticing, a place of ecological interest.

Holly_leaf_miner2

The first lesson local ecology teaches is: Pay attention. Once I had a 100-year-old holly tree in my urban front yard, but not until I did an assignment I had given my students did I learn about holly leaf miners. Apparently there are several species of insects whose whole life consists of making traces in holly leaves, and there are several scientists who have spent their careers figuring out this interaction. I went outside. Sure enough, my holly tree had them. Sharing the street with holly leaf miners made it look slightly different.

Last fall my students discovered a spectacularly armored wheel bug in an abandoned orchard behind a baseball field. They had no idea that something like a wheel bug could exist. Do they respect this place more, given the possibility of wheel bugs?

“Most of us are still related to our native fields as the navigator to undiscovered islands in the sea,” Thoreau wrote late in life. “We can any afternoon discover a new fruit there, which will surprise us by its beauty or sweetness. So long as I saw in my walks one or two kinds of berries whose names I did not know, the proportion of the unknown seemed indefinitely, if not infinitely, great.” In fact, no one has the least idea what is going on under our noses. Geneticist Christopher Mason and his colleagues recently reported that almost half of the DNA they found in the New York City subway system was from organisms unknown to science. The New York Times quoted Mason as saying, “People don’t look at a subway pole and think, ‘It’s teeming with life.’ After this study, they may. But I want them to think of it the same way you’d look at a rain forest, and be almost in awe and wonder, effectively, that there are all these species present.”

Is it any wonder children don’t spend enough time experiencing nature in their backyards when parents hardly credit their backyards with offering an authentic experience of the natural world?

The second lesson: There is plenty left to discover, and you can start right here. Also, what you discover might change your mind.

Deep and inchoate ideas about how people interact with nature have a surprisingly strong influence on the teaching and learning of ecology. In his book Thoreau’s Country, David Foster pointed out that when Thoreau built his cabin, the landscape around Walden Pond was extensively farmed, fenced and populated. Diana Saverin recently noted in the Atlanticthat while Annie Dillard wrote Pilgrim at Tinker Creek, she was a suburban housewife. Few people remember that Edward Abbey spent his formative years in western Pennsylvania, near the town of Home. These facts need to be emphasized because many implicitly assume that only an individual alone in the wilderness can experience nature. Is it any wonder children don’t spend enough time experiencing nature in their backyards when parents hardly credit their backyards with offering an authentic experience of the natural world?

I might walk to work on the streets of Berea, Ohio, and daydream about building a cabin in Alaska or backpacking on the Pacific Crest Trail. Of course, there’s nothing wrong with valuing wilderness or visiting Alaska. But this thinking can demean my surroundings. There are probably plants in the sidewalk cracks I can’t identify yet.

If everywhere is nature, why not turn the question around? What is the difference if I teach pollination ecology in the Costa Rican rainforest instead of the CVS parking lot? The difference, I think, is that we live here. Students buy ramen noodles at this CVS. They are complicit in the processes that led to the paving, the planting of ornamental quince bushes, and the importing of European honeybees. Whatever happens here, to the asphalt and the quinces and the bees, they need to know about it, because they have to live with it. As Thoreau exhorts in Wild Fruits, his belatedly discovered final manuscript:

Do not think, then, that the fruits of New England are mean and insignificant while those of some foreign land are noble and memorable. Our own, whatever they may be, are far more important to us than any others can be. They educate us and fit us to live here in New England. Better for us is the wild strawberry than the pine-apple, the wild apple than the orange, the chestnut and pignut than the cocoa-nut and almond, and not on account of their flavor merely, but the part they play in our education.

The landscapes where we live are the ones we are most responsible for, and they teach us about the consequences of our actions.

Thoreau does not call wild strawberries “just as interesting” as pineapples. He does not say we could learn “just as much” from our local fruits. He calls them “far more important to us” — specifically for their educational value. Local fruits and local places teach us about our roles in nature — not just as naturalists or scientists, but as parts of ecosystems. The landscapes where we live are the ones we are most responsible for, and they teach us about the consequences of our actions.

My own sense of responsibility for the landscape where I grew up burgeoned when I learned how my ancestors had participated in shaping it. In the 1790s, my great-great-great-great grandfather John McCullough bought 250 acres of forested land near Burnside, Pennsylvania, and spent the rest of his life clearing and farming it with his wife and twelve children. In 1880, his granddaughter Mollie married a logger, who also built things out of wood, especially wagons. Mollie’s brother owned a sawmill, ran a lumber company, and opened a coal mine. Through the first decades of the 1900s, her daughter and son-in-law worked for a coal company. By the 1970s, my father was growing 20 million trees a year on farmland John McCullough and his neighbors had cleared. I grew up with young forests and orange creeks because my own family had created them. By teaching local ecology, I give students a similar sense: This is the place where we live, that we have shaped and continue to shape. This is the place where our children will live.

CVS_exterior

Ecologist Josh Donlan and other advocates of rewilding — especially reintroducing large carnivores — start from the premise that “earth is now nowhere pristine.” They argue that because our actions affect every ecosystem on earth, we should claim this responsibility, and manage ecosystems intentionally. Surely there are no better case studies in how human actions shape landscapes than the landscapes where we live. Certainly, educators need to help students make global connections — when they drive across campus instead of walking, they might contribute infinitesimally to a change in the mist regime of an epiphytic orchid in a rainforest canopy in Costa Rica. Interactions with our local landscapes are simply more immediate and concrete. When I take students in western Pennsylvania to compare invertebrate communities in streams with and without acid mine drainage, they understand the results within the context of their lives. They come from old company towns. Their uncles sell mining equipment. Their neighbors work for the power plant. They mountain bike on slag piles. And they like to fish. Doing local ecology provides a direct impetus to take ownership of our home landscapes, to accept our responsibility as stewards.

This third lesson is perhaps the greatest social benefit of local ecology. It is well to cultivate adults who can pay attention and continue to learn from nature. “Those who dwell, as scientists or laymen, among the beauties and mysteries of the earth, are never alone or weary of life,” wrote Rachel Carson, who developed her sense of wonder in an industrial city near Pittsburgh. But as a society we also need citizens who take responsibility for the ways they interact with nature. This may be best learned through the intimate and practical interactions we can only have with the landscapes in which we live.

Kathryn M. Flinn is an ecologist originally from Indiana, Pennsylvania.  In August, she will move to Baldwin Wallace University in Berea, Ohio. Her website, https://kathrynflinn.wordpress.com/, has more information about her teaching and research.

VIEW IN SEARCHABLE TABLE

Below, you will find a table of all the Data Nugget activities. Click on the Title to open a page displaying the teacher guide, student activities, grading rubric, and associated resources. The table can be sorted using the arrows located next to each column header. It can also be searched by content area using the search bar, located to the top right of the table.

TitleKeywordsSummaryContent LevelStudy Location
DSC_0060Won’t you be my urchin?coral reef, herbivory, marine, sea urchin, water, animals, competitionCorals are the most important reef animals since they build the reef for all of the other animals to live in. But corals only like to live in certain places. In particular they hate living near algae because the algae and coral compete for the space they both need to grow. Perhaps if there are more vegetarians, like urchins, eating algae on the reef then corals would have less competition and more space to grow.1Flower Garden Banks National Marine Sanctuary, Texas
Do urchins flip out in hot water?animals, climate change, marine, heatwaves, urchins, behavior, invertebrates, environmental changePeriods of unusual warming in the ocean are called marine heatwaves. During marine heatwaves, water gets 2-3 degrees hotter than normal. That might not sound like much, but for an urchin, it is a lot. The research team decided to test whether marine heat waves could be stressing urchins by looking at a simple behavior that they could easily measure - how long it takes urchins to flip back over.1 & 3University of California - Santa Barbara
DSC_0060Coral bleaching and climate changeclimate change, coral reef, marine, mutualism, temperature, animals, algae, adaptation, evolutionCorals are animals that build coral reefs. They look brown and green because they have small plants, called algae, that live inside them. The coral animal and the algae work together to produce food so that corals can grow big. When the water gets too warm, sometimes the coral and algae can no longer work together. The algae leave and the corals turn white, called coral bleaching. Scientists want to study coral bleaching so they can protect corals and the reefs that provide a home for so many different species.1Florida Keys, Florida
Too hot to help? Friendship in a changing climatemutualism, algae, coral, genotype, photosynthesis, respiration, climate changeCoral and certain types of algae form a mutualism. However, climate change is causing warmer ocean temperatures that stress the relationship. Casey set out to test if different algae genotypes were capable of being better mutualists under warm temperatures. If he could identify these genotypes, then maybe that could help protect coral in the future.3California State University - Northridge
Corals in a strange placeadaptation, coral reef, mangrove, morphologyWhen you picture coral, you might imagine beautiful reef structures with clear water and colorful corals and fishes. But, there are actually corals that live in other habitats as well! Does the same species of coral look different depending on where it lives?2Belize
pcare2Raising Nemo: Parental care in the clown anemonefishanimals, behavior, coral reef, ecology, fish, marine, mating, tradeoff, plasticityOffspring in many animal species rely on parental care; the more time and energy parents invest in their young, the more likely it is that their offspring will survive. However, parental care is costly for the parents. The more time spent on care, the less time they have to find food or care for themselves. In the clown anemonefish, the amount of food available may impact parental care behaviors. When there is food freely available in the environment, are parents able to spend more time caring for their young?3Boston University, Massachusetts
Buried seeds, buried treasuregermination, long-term, plants, seed bank, seed viability, agricultureOver 100 years ago, a scientist named William J. Beal had a question: how long do seeds survive underground? He started an experiment by filling 20 bottles with seeds from 50 plant species, buried them on campus, and creating a map to find them in the future. This map have been passed down from scientist generation to generation. The most recent bottle was dug up in 2021, and scientists tested how many seeds were still able to germinate after 142 years underground.2Michigan State University
Getting to the roots of serpentine soilsoil, plasticity, limiting factors, plants, ecologyWhen an organism grows in different environments, some traits change to fit the conditions. Serpentine soils have high amounts of toxic heavy metals, do not hold water well, and have low nutrient levels. Low levels of water and nutrients found in serpentine soils limit plant growth. Because serpentine soils have fewer plant nutrients and are drier than non-serpentine soils, Alexandria thought that plants growing in serpentine soils may not invest as much into large root systems.2University of Miami, Florida
The prairie burns with desireecology, prairie, plants, fire ecology, human impact, reproduction, land managementFire plays a crucial role for prairie habitats across North America. Stuart became interested in learning more about how fire affects the reproduction of native prairie plants. He knew that Echinacea plants grow in many places, but they have a hard time making seeds. He looked at a long-term dataset to see whether fire might help Echinacea by getting plants on the same schedule to make flowers at the same time, bringing neighbors closer to each other and making it easier to be pollinated.3Staffanson Prairie Preserve, Minnesota
A burning questionbiodiversity, canopy, ecology, fire ecology, forest, human impact, keystone species, land management, natural resourcesFire is part of the natural history of oak forests. They are adapted to recover quickly and they actually can benefit from fire. This is important for land managers who want to encourage the health of oak forests. Ellen and John wanted to know if there were more plant species in oak forests that had prescribed fires so they looked at a long-term dataset to find patterns in biodiversity.2Madison School Forest, Wisconsin
These are two different experimental plots within the large field experiment at Konza Prairie Biological Station. The one with lots of trees is an unburned plot, the one with lots of grass is a burned plot.Fertilizer and fire change microbes in prairie soilbiodiversity, diversity, grassland, microbes, plants, prairie, soil, agriculture, fire ecologyPrairies grow where three environmental conditions come together – a variable climate, frequent fires, and large herbivores roaming the landscape. However, prairies are experiencing many changes. For example, people now work to prevent fires, which allows forest species take over. In addition, land previously covered in prairie is now being used for agriculture. How do these changes affect the plants, animals, and microbial communities that inhabit prairies?4Konza Prairie Biological Station, Kansas
A bison mom and her calf.Does more rain make healthy bison babies?animals, ecology, keystone species, plants, prairie, precipitation, agricultureThe North American Bison is an important species for the prairie ecosystem. Bison affect the health of the prairie in many ways, and are also affected by the prairie as well. Each year when calves are born, scientists go out and determine their health by weighing them. This long-term dataset can be used to figure out whether environmental conditions from the previous year affect the health of the calves born in the current year.2Konza Prairie Biological Station, Kansas
City parks: wildlife islands in a sea of cementanimals, biodiversity, ecology, urban, island biogeography, parksIt's tempting to think that wild places are only somewhere "out there", far away from humans and cities. However, as more and more people move into cities, they are quickly becoming the main place where many people experience nature and interact with wildlife. A camera-trapping project in the Cleveland Metroparks reveals a vast urban wilderness that is home to countless wild creatures living among us.3Cleveland Metroparks, Ohio
Candid camera: capturing the secret lives of carnivoresanimals, biodiversity, carnivores, ecology, island biogeographyCarnivores captivate people’s interest for many reasons – they are charismatic, stealthy, and can be dangerous. Not only are they fascinating, they’re also ecologically important. Carnivores help keep prey populations in balance. While they are important, they are also difficult to monitor.3Apostle Islands National Lakeshore, Wisconsin
Picky eaters: dissecting poo to examine moose dietsanimal behavior, animals, ecology, foraging, herbivory, national park, predator-preySince wolves have disappeared from Isle Royale, moose populations have exploded. Moose are important herbivores, and with so many on the island they are having strong impacts on the island's plant communities. Do moose just eat any plant they find, or do they have a preference for certain types?3Isle Royale National Park, Michigan
Guppies on the moveanimals, aquatics, behavior, ecology, genetics, migration, movement, tropicsAnimal parents often choose where to have their offspring in the place that will give them the best chance at success. They look for places that have plentiful food, low risk of predation, and good climate. Why, then do animals sometimes move away from the place they are born?2Kellogg Biological Station, Michigan
Deadly windowsanimals, behavior, birds, environmental, urbanGlass makes for a great windowpane because you can see right through it. However, this makes windows very dangerous for birds. Many birds die from window collisions in urban areas. In North America window collisions kill up to 1 billion birds every year! Perhaps local urban birds are able to learn the locations of windows and avoid collisions. By comparing window collisions by local birds to those of migrant birds just passing through, we can determine if local birds have learned to deal with this challenge.2Virginia Zoological Park, Virginia
Bringing back the Trumpeter Swananimals, biodiversity, birds, ecology, environmental, restorationTrumpeter swans are the biggest native waterfowl species in North America. At one time they were found across North America, but by 1935 there were only 69 known individuals in the continental U.S.! In the 1980s, many biologists came together to create a Trumpeter Swan reintroduction plan. Since then the North American Trumpeter Swan survey has been conducted to measure swan populations and determine whether this species is recovering.3Kellogg Bird Sanctuary, Michigan
DSC_0060The birds of Hubbard Brook, Part Ianimals, biodiversity, birds, climate change, succession, disturbance, ecologyAvian ecologists at the Hubbard Brook Experimental Forest have been monitoring bird populations for over 50 years. The data collected during this time is one of the longest bird studies ever conducted! What can we learn from this long-term data set? Are bird populations remaining stable over time?2Hubbard Brook Experimental Forest, New Hampshire
DSC_0060The birds of Hubbard Brook, Part IIanimals, biodiversity, birds, climate change, succession, disturbance, ecology, habitatHubbard Brook was heavily logged and disturbed in the early 1900s. When logging ended in 1915, trees began to grow back. The forest then went through secondary succession, which refers to the naturally occurring changes in forest structure that happen as a forest ages after it has been cut or otherwise disturbed. Can these changes in habitat availability, due to succession, explain why the number of birds are declining at Hubbard Brook? Are all bird species responding succession in the same way?3Hubbard Brook Experimental Forest, New Hampshire
Trees and bushes, home sweet home for warblersanimals, biodiversity, birds, disturbance, ecology, environmental, habitatAndrews Forest is a long-term ecological research site where there have been manipulations of timber harvest and forest re-growth. This history has large impacts on the bird habitats found in an area. Each year since 2009, scientists have gone out and measured bird populations and habitat types. Two species of warbler with very different habitat preferences can give insight into how birds are responding to these disturbances.4HJ Andrews Experimental Forest, Oregon
DSC_0060Is chocolate for the birds?agriculture, animals, birds, biodiversity, ecology, rainforest, succession, habitatHumans invented agriculture 9,000 years ago, and today it covers 40% of Earth’s land surface. To grow our crops, native plants are often removed, causing the loss of animals that relied on these native plants for habitat. However, sometimes animals can use crop species for food and shelter. For example, the cacao tree may provide habitat for bird species in the rainforests of Costa Rica. Will the abundance and types of birds differ in cacao plantations, compared to native rainforests?2Limón Province, Costa Rica
 junglefoulFeral chickens fly the coopadaptation, animals, behavior, birds, ecology, evolution, invasive species, mating, heredity, geneticsSometimes domesticated animals escape captivity and interbreed with closely related wild relatives. Their hybrid offspring have some traits from the wild parent, and some from the domestic parent. Traits that help hybrids survive and reproduce will be favored by natural selection. On the island of Kauai, domestic chickens escaped and recently interbred with wild Red Junglefowl to produce a hybrid population. Over time, will the hybrids on Kauai evolve to be more like chickens, or more like Red Junglefowl?3Kauai, Hawaii
DSC_0060Sexy smellsadaptation, animal behavior, animals, birds, mating, evolution, sexual selectionAnimals collect information about each other and the rest of the world using multiple senses, including sight, sound, and smell. They use this information to decide what to eat, where to live, and who to pick as a mate. Many male birds have brightly colored feathers and ornaments that are attractive to females. Visual signals like these ornaments have been studied a lot in birds, but birds may be able to determine the quality of a potential mate using other senses as well, such as their smell!2Mountain Lake Biological Station, Virginia
chickadee2Finding Mr. Rightadaptation, animals, behavior, biodiversity, birds, evolution, genes, mating, local adaptationMountain chickadees are small birds that live in the mountains. To deal with living in a harsh environment during the winter, mountain chickadees store large amounts of food throughout the forest. Compared to populations at lower elevations, birds from higher elevations are smarter and have better spatial memory, helping them better find stored food. Smarter females from high elevations may be contributing to local adaptation by preferring to breed with males from their own population.4University of Nevada Reno & Sagehen Experimental Forest
Spiders under the influenceanimals, invertebrates, habitat, chemical pollution, aquatic, streamsPeople use pharmaceutical drugs, personal care products, and other chemicals on a daily basis. Often, they get washed down our drains and end up in local waterways. Chris knew that many types of spiders live near streams and are exposed to toxins through the prey they eat. Chris wanted to compare effects of the chemicals on spiders in rural and urban environments. By comparing spider webs in these two habitats, they could see how different the webs are and infer how many chemicals are in the waterways. 2Baltimore Ecosystem Study LTER
Trees and the citybiodiversity, ecology, environmental justice, social demographics, urbanTrees provide important benefits, such as beauty and shade. The number and types of tree species that are planted in a neighborhood can increase the benefits received from trees in urban areas. Based on her own observations, Adrienne started conversations with her colleagues about differences in urban landscapes. They conducted a study to see how social demographics of neighborhoods may be related to tree species richness and tree cover. 3Minneapolis and St. Paul, Minnesota
Salty sediments? What bacteria have to say about chloride pollutionbacteria, chemistry, disturbance, environmental, microbes, pollution, salt, urban, waterIn snowy climates, salt is applied to roads to help keep them safe during the winter. When the snow melts, salt makes its way into local rivers. Halophiles, or bacteria that thrive in salty conditions, might be a good indicator of how much salt is in a particular waterway, telling scientists when certain areas have become too polluted with salt. 3Southeastern Wisconsin
DSC_0060A tail of two scorpionsanimal behavior, animals, predationSpecies rely on a variety of methods to defend against predators, including camouflage, speedy escape, or retreating to the safety of a shelter. Other animals, such as scorpions, have painful venomous stings. Scientists wanted to know whether the pain of a scorpion sting was enough to deter predators, like the grasshopper mouse.2Santa Rita Mountains, Arizona
Why are butterfly wings colorful?adaptation, animals, insects, models, predationBig wings allow butterflies to fly everywhere with ease. But you may wonder, why are the wings of some species so brightly colored? The red postman butterfly lives in rainforests in Mexico, Central America, and South America. The color pattern on its wing is usually a mix of red, yellow, and black. These bright colors may warn birds and other predators that they would not make a tasty meal. Another potential reason for butterflies to have bright colors and dramatic patterns is to attract mates.3La Selva Tropical Biological Station, Sarapiquí, Costa Rica
To bee or not to bee aggressiveanimals, behavior, genes, insects, tradeoff, plasticity, aggressionHoney bees turn nectar from flowers into honey, and honey serves as an energy-rich food source for the colony. Honey also makes hives a target for break ins by animals that want to steal it. Bees need to aggressively defend their honey when the hive is threatened. They also need to ensure that they do not waste energy on unnecessary aggressive behaviors when the threat level is low. One way bees might match their aggressiveness to the threat level in the environment is learning from adults when they are young.3University of Kentucky, Kentucky
Ant wars!aggression, animals, behavior, competition, insectsNeighboring colonies of pavement ants often compete for food, leading to tension. If an ant finds a non-nestmate, it organizes a large war against the nearby colony. This results in huge sidewalk battles that can include thousands of ants fighting for up to 12 hours! Scientists wanted to know, what are the factors that lead to war?3University of Colorado-Denver and University of South Dakota
DSC_0060CSI: Crime Solving Insectsanimals, insects, parasitismYou might think maggots (blow fly larvae) are gross, but without their help in decomposition we would all trip over dead bodies every time we went outside! Forensic entomologists also use these amazing insects to help solve crimes. Blow flies oviposit on dead bodies; the age of the maggots helps scientists determine how long ago a body died. Scientists noticed parasitic wasps were also present at some bodies. Might these wasps delay blow fly oviposition and interfere with scientists' estimates of time of death?3Pierce Cedar Creek Institute, Michigan & Valparaiso University, Indiana
DSC_0060Shooting the poopadaptation, animal behavior, animals, insects, predationCaterpillars are a great source of food for many species. The silver-spotted skipper caterpillar has a variety of defense strategies against predators, including building leaf shelters for protection. This caterpillar was also discovered to “shoot its poop”, sometimes launching it over 1.5m! Might this very strange behavior serve as some sort of defense against predators?2Georgetown University, Washington DC
DSC_0060How the cricket lost its song, Part Iadaptation, animal behavior, animals, evolution, mating, parasitism, rapid evolutionPacific field crickets live on several Hawaiian Islands, including Kauai. Male field crickets make a loud, long-distance song to help females find them, and then switch to a quiet courtship song once a female comes in close. One summer scientists noticed that the crickets on the island were unusually quiet. Back in the lab they saw males that had lost their specialized wing structures used to produce song! Why did these males lose their wing structures?3Kauai Agricultural Research Center - Kapaa, Hawaii
DSC_0060How the cricket lost its song, Part IIadaptation, animal behavior, animals, evolution, mating, parasitism, rapid evolutionWithout their song, how are flatwing crickets able to attract females? In some other animals species, males use an alternative to singing, called satellite behavior. Satellite males hang out near a singing male and attempt to mate with females who have been attracted by the song. Perhaps the satellite behavior gives flatwing males the opportunity to mate with females who were attracted to the few singing males left on Kauai. 3Kauai Agricultural Research Center - Kapaa, Hawaii
Purring crickets: The evolution of a new cricket songadaptation, animal behavior, animals, evolution, mating, parasitism, rapid evolutionAbout twenty years ago, scientists discovered male Pacific field crickets in several spots in Hawaii had stopped making songs due to selection from a parasitoid fly that uses the songs to locate their hosts. One summer, scientists heard what sounded like a purring cat, but there was no cat in sight. This sound was coming from crickets, and was unlike anything ever observed before. Could it be the beginning of evolution of a novel mating signal?3Kauai Agricultural Research Center - Kapaa, Hawaii
dungbeetleBeetle battlesadaptation, animals, behavior, competition, evolution, insects, matingMale animals spend a lot of time and energy trying to attract females. They may fight with other males or court females directly. Is there one trait that is both good for fighting males and attracting females? In the horned dung beetle, males have to fight with other males for space in underground tunnels where females mate and lay their eggs. Males also attract females by tapping on their backs. Males that are stronger may potentially be better at both defending tunnels and at attracting females by tapping.2Perth, Australia
Tree-killing beetlesanimals, biodiversity, disturbance, ecology, environmental, insects, plantsA beetle the size of a grain of rice seems insignificant compared to a vast forest. However, during outbreaks the number of mountain pine beetles can skyrocket, leading to the death of many trees. Recent outbreaks of mountain pine beetles killed millions of acres of lodgepole pine trees across western North America. Widespread tree death caused by mountain pine beetles can impact human safety, wildfires, nearby streamflow, and habitat for wildlife.2Colorado State University, Colorado
A monarch caterpillar on a milkweed leaf.Mowing for monarchs, Part Ianimals, behavior, biodiversity, disturbance, ecology, plants, insectsDuring the spring and summer months, monarch butterflies lay their eggs on milkweed plants. Milkweed plays an important role in the monarch butterfly’s life cycle. When milkweed is cut at certain times of the year new shoots grow, which are softer and easier for caterpillars to eat. Scientists set out to see if mowing milkweed plants could help boost struggling monarch populations.2Kellogg Biological Station, Michigan
Mowing for monarchs, Part IIanimals, behavior, biodiversity, disturbance, ecology, plants, insects, predationWhen the scientists mowed down milkweed plants for their experiment, they changed more than the age of the milkweed plants. They also removed other plant species in the background community. Perhaps the patterns they were seeing were driven not by milkweed age, but by eliminating predators from the patches they mowed.2Kellogg Biological Station, Michigan
How milkweed plants defend against monarch butterfliesherbivory, evolution, coevolution, plants, insects, ecologyFor millions of years, monarch butterflies have been antagonizing milkweed plants. Although adult monarchs drink nectar from flowers, their caterpillars only eat milkweed leaves, which harms the plants. The only food for monarchs is milkweed leaves, meaning they have evolved to be highly specialized, picky eaters. But their food is not a passive victim. Like most other plants, milkweeds fight back with defenses against herbivory. Which defensive traits are helping in the fight against herbivory?3Cornell University
Where to find the hungry, hungry herbivoresherbivory, plants, insects, ecologyWhen travelling to warm, tropical places you are exposed to greater risk of diseases. The same pattern of risk is true for other species like plants grown for food; crops in warm places have more problems with pests than those in colder areas. Does this pattern hold for plants in the wild as well?2Michigan State University
Are plants more toxic in the tropics?herbivory, diversity, plants, insects, ecology, adaptationLong before chemists learned how to make medicines in the laboratory, people found their medicines in plants. To this day, people still extract some medicinal drugs from plants. But, why do plants make these chemicals that are often so useful to people? Many of these chemicals are to reduce herbivory. Carina thought that this might differ by latitude, or distance from the Equator. Are tropical plants more toxic?
3Michigan State University
DSC_0060Do insects prefer local or foreign foods?herbivory, invasive species, plants, insects, enemy release, ecologyInsects that feed on plants, called herbivores, can have big effects on how plants grow. A plant with leaves eaten by herbivores will likely do worse than a plant that is not eaten. Herbivores may even determine how well an exotic plant does in its new habitat and whether it becomes invasive. Understanding what makes a species become invasive could help control invasions already underway, and prevent new ones in the future.2Kellogg Biological Station, Michigan
DSC_0060Do invasive species escape their enemies?herbivory, invasive species, plants, insects, enemy release, ecologyInvasive species have been introduced by humans to a new area and negatively impact places they invade. Many things change for an invasive species when it is moved from one area to another. For example, a plant that is moved across oceans may not bring its enemies along for the ride. Now that the plant is in a new area with nothing to eat or infect it, the plant could potentially do very well and become invasive.2Kellogg Biological Station, Michigan
Testing the tolerance of invasive plantsecology, herbivory, invasive species, plants, tolerancePeople move species around the globe, and some of these species cause problems where they are introduced. What is it about these invasive species that makes them able to invade? Perhaps certain traits cause invasive species to be more troublesome than others. By studying trait differences between native and invasive populations of the same species, we can learn something about the causes of invasions.3McLaughlin Natural Reserve, California
DSC_0060Invasion meltdownclimate change, ecology, invasive species, plants, temperatureHumans are changing the earth in many ways, including adding greenhouse gasses to the atmosphere, which contributes to climate change, and introducing species around the globe, which can lead to invasive species. Scientists wanted to know, could climate change actually help invasive species? Because invasive species have already survived transport from one habitat to another, they may be species that are better able to handle change, such as temperature changes.3Kellogg Biological Station, Michigan
DSC_0060Springing forwardclimate change, phenology, plants, temperatureWhat does climate change mean for flowering plants that rely on temperature cues to determine when it is time to flower? Scientists who study phenology, or the timing if life-history events in plants and animals, predict that with warming temperatures, plants will produce their flowers earlier and earlier each year.1 & 3Kellogg Biological Station, Michigan
The sound of seagrassacoustics, sound, photosynthesis, marine, productivity, decibels, physicsUnderwater seagrass meadows have high plant productivity, or growth, which could help offset the effects of climate change. Megan and Kevin are working with biologists to determine the value of applying sound-based methods to monitor photosynthesis in seagrass meadows. They wanted to see whether ambient sound levels were noticeably different during peak photosynthesis times. 3Gulf of Mexico, Texas
Seagrass survival in a super salty lagoonclimate change, ecology, environmental, long-term, marine, plants, salinityUnfortunately, seagrasses are disappearing worldwide. Seagrasses are sensitive to changes in their environment because they have particular conditions that they prefer. Kyle started working with Ken during graduate school and wanted to understand more about what environmental conditions, such as salinity, temperature, and light levels may have caused the decline they saw in manatee grass in Laguna Madre.3Laguna Madre, Gulf of Mexico, Texas
Lake Superior Rhythmsamplitude, aquatic, atmosphere, environmental, physics, student research, wave period, wavesIn high school, Gena and Ali set out to learn about the geophysical forces acting on Lake Superior. They wanted to investigate why they would sometimes see such dramatic fluctuations in Lake Superior water levels. They learned that large lakes exhibit a phenomenon called a seiche (pronounced saysh) and they decided to investigate how often the water switched directions and how much the water level changed because of the seiche.2Bayfield, Wisconsin
The end of winter as we’ve known it?climate change, ice coverLake Superior plays a vital role in the lives of people who live and work on its shores, and therefore all sorts of data are recorded to help understand and take care of it. Forrest, a high school student, used data from archives to figure out if the ice season was getting shorter each winter in his home town. The length of the ice season is important because it frees the island residents from working around a ferry schedule, allowing them to drive on the ice to get to the mainland.3Madeline Island, Wisconsin
kgrayson1When a species can’t stand the heatanimals, climate change, disturbance, ecology, environmental, mating, temperatureTuatara are a unique species of reptile found only in New Zealand. In this species, the temperature of the nest during egg development determines the sex of offspring. Warm nests lead to more males, and cool nests lead to more females. With warming temperatures due to climate change, scientists expect the sex ratio to become more and more unbalanced over time, with males making up more of the population. This could leave tuatara populations with too few females to sustain their numbers.3North Brother Island, New Zealand
DSC_0060What do trees know about rain?climate change, dendrochronology, ecology, plants, precipitation, temperature, waterThe typical climate of arid northwest Australia consists of long drought periods with a few very wet years sprinkled in. Scientists predict that climate change will cause these cycles to become more extreme – droughts will become longer and periods of rain will become wetter. When variability is the norm, how can scientists tell if the climate is changing and droughts and rain events today are more intense than what we've seen in the past? The answer to this challenge comes from trees! 3Pilbara region, northwest Australia
Changing climates in the Rocky Mountainscitizen science, climate change, community science, ecology, environmental, plantsAs the climate warms and precipitation changes, plants may have to move to survive. To figure out if species are moving, we need to know where they’ve lived in the past, and if climates are changing. One way that we can study both things is to use the Global Vegetation Project. The goal of this project is to curate a global database of plant photos that can be used by educators and students around the world. 4Rocky Mountains, Wyoming
A window into a tree’s worldclimate change, dendrochronology, ecology, plants, temperatureScientists are very interested in learning how trees respond to rapidly warming temperatures. Luckily, trees offer us a window into their lives through their growth rings. Growth rings are found within the trunk, beneath the bark. These rings provide a long historical record, which can be used to study how trees respond to climate change.2Harvard Forest LTER, Massachusetts
Breathing in, Part Iclimate change, photosynthesis, respiration, carbonPhotosynthesis is the process by which trees and other plants trap the sun’s energy within the molecular bonds of glucose. Tree growth pulls carbon out of the atmosphere and trees hold on to it for long periods of time. This process is known as carbon sequestration or carbon accumulation. Kristina and Susan decided they needed to work together to learn more about how carbon accumulation rates and how they differ across various types of forests found around the world.4Global
Breathing in, Part IIclimate change, photosynthesis, respiration, carbon, climate model, precisionLike many other scientists, Susan and Kristina are concerned about global warming. Global warming is the well-documented rise of the temperature of Earth’s surface, oceans, and atmosphere. They wanted to make sure that those creating climate change policy have the most precise data available. They compared their ForC model, which predicts carbon accumulation based on forest regrowth across the glove, to a similar model the IPCC was using.4Global
Beetle, it’s cold outside!animals, climate change, ectotherm, insects, temperature, snowMany species rely on the snow for protection from the winter’s cold. The snow acts as an insulating blanket, covering the soil and keeping it from getting too cold. If temperatures get too hot in the winter, snow melts and leaves the soil uncovered for longer periods of time. This leads to the shocking pattern that warmer temperatures actually means the soil gets colder! How will species that rely on the snow, like lady beetles, respond to warmer temperatures due to climate change?2University of California, Berkeley
Benthic buddiesadaptation, animals, arctic, biodiversity, ecology, environmental, invertebrates, lagoons, marineArctic lagoons support a surprisingly wide range of marine organisms! Marine worms, snails, and clams live in the muddy sediment of these lagoons. Having a rich variety of benthic animals in these habitats supports fish, which migrate along the shoreline and eat these animals once the ice has left. Ken, Danny, and Kaylie are interested in learning more about how the extreme seasons of the High Arctic affect the marine life that lives there. 2Beaufort Lagoon LTER site, Alaska
To reflect, or not to reflect, that is the questionalbedo, Arctic, climate change, environmental, ice, temperature, waterLong-term observations of sea ice extent at the North Pole show it is declining, and fast! Why is this important? Sea ice has a higher albedo than sea water, meaning it reflects back more of the sun's energy. If Arctic albedo decreases, this might create a feedback and lead to even more warming.3University of Colorado, Boulder
DSC_0060The Arctic is melting – so what?climate change, marine, models, temperature, water, weather, snow, albedo, ArcticThink of the North Pole as one big ice cube – a vast sheet of ice, only a few meters thick, floating over the Arctic Ocean. With global warming, more sea ice is melting than ever before. If more ice melts in the summer than is formed in the winter, the Arctic Ocean will become ice-free. Scientists ran a climate model to determine whether this loss of sea ice could affect extreme weather in the northern hemisphere.4Arctic Ocean, North Pole
Eavesdropping on the oceanacoustic ecology, physics, whales technology, mammals, marine biology, renewable energy, population, human impactWinds that blow over the ocean are more consistent than on land, making offshore wind energy a potentially reliable renewable energy source. The construction of offshore windmills could impact whales. Scientists want to see whether it is possible to identify the best time of year for construction with the least disturbance to marine mammals. Acoustic ecology is a way to learn more about whales their presence in the proposed wind energy areas through sound.4Offshore by Morro Bay, California
When whale I sea you again?climate change, marine, temperature, water, whalesPeople have hunted whales for over 5,000 years for their meat, oil, and blubber. Today, as populations are struggling to recover from whaling, humpback whales are faced with additional challenges due to climate change. Their main food source is krill, which are small crustaceans that live under sea ice. As sea ice disappears, the number of krill is getting lower and lower. Humpback whale population recovery may be limited because their main food source is threatened by ongoing ocean warming.4Western Antarctic Peninsula, Palmer Station LTER
Can biochar improve crop yields?agriculture, environmental, fertilization, plants, soil, waterBiochar is a pretty unique material. It is created when things burn without oxygen. Most biochar has lots of tiny spaces, or pores, that cause it to act like a hard sponge when it is in the soil. Due to these pores, the biochar can hold more water and nutrients than the soil can by itself. Adding biochar to the soil may help farmers grow more crops, especially in areas prone to drought where water is limited.3Colorado State University Agricultural Research and Development Center
A plant breeder’s quest to improve perennial grainagriculture, genetics, artificial selection, DNA, phenotype, genotype, nucleotides, sequencing, Kernza®Kernza® is a new grain crop that is similar to wheat. Kernza® breeders are working on improving the same traits that have already been improved in annual wheat, including larger seed size. Hannah wanted to see whether different genetic makeups (genotypes) lead to differences in seed size (phenotypes) so selecting individuals to breed becomes easier and costs are reduced.4University of Minnesota
Nitrate: Good for plants, bad for drinking wateragriculture, environmental, fertilization, nitrogen, soil, water, plants, human health, crops, Kernza®Nitrate dissolves well in water. This helps make it an easy form of nitrogen for plants to use, but it can also end up in rivers and groundwater where it becomes harmful to human health. Most of the crops we grow are annual plants with shallow roots, but perhaps planting perennial crops can help take more nitrate from the soil before it reaches our groundwater.3University of Minnesota
Collaborative cropping: Can plants help each other grow?agriculture, environmental, plants, crops, Kernza®Most of the crops grown on farms in the United States are annual plants, like corn, soybeans, and wheat. However, there may be potential benefits of perennial plants that could increase sustainability. One strategy to improve field conditions for perennial crops and to increase yield could be to plant legumes alongside them.3University of Minnesota
A difficult droughtfermentation, ethanol, agriculture, biofuels, climate change, plants, carbonBiofuels are made from plants that are growing today, and are being considered as an alternative to fossil fuels. To become biofuels, plants need to go through a series of chemical and physical processes that transform the sugars into ethanol. Scientists are interested in seeing how yeast’s ability to transform sugar into fuel is affected by environmental conditions in fields, such as droughts.2University Wisconsin-Madison, GLBRC, Kellogg Biological Station &
DSC_0060Growing energy: comparing biofuel crop biomassagriculture, biofuels, climate change, fertilization, plantsCorn is one of the best crops for producing biomass for fossil fuels, however it is an annual and needs very fertile soil. To grow corn, farmers add a lot of chemical fertilizers and pesticides to their fields. Other crops, like switchgrass, prairie, poplar trees, and Miscanthus grass are perennials and require fewer fertilizers and pesticides to grow. If perennials can produce high levels of biomass with low inputs, perhaps they could produce more biomass than corn under certain low nutrient conditions.3GLBRC, Kellogg Biological Station & University Wisconsin-Madison
DSC_0060Fertilizing biofuels may cause release of greenhouse gassesagriculture, biofuels, climate change, fertilization, greenhouse gasses, nitrogen, plantsOne way to reduce the amount of greenhouse gases we release into the atmosphere could be to grow our fuel instead of drilling for it. Unlike fossil fuels that can only release CO2, biofuels remove CO2 from the atmosphere as they grow and photosynthesize, potentially balancing the CO2 released when they are burned for fuel. However, the plants we grow for biofuels don’t necessarily absorb all greenhouse gas that is released during the process of growing them on farms and converting them into fuels.3GLBRC, Kellogg Biological Station, Michigan
DSC_0060The ground has gas!agriculture, climate change, temperature, greenhouse gasses, nitrogen, plantsNitrous oxide and carbon dioxide are responsible for much of the warming of the global average temperature that is causing climate change. Sometimes soils give off, or emit, these greenhouse gases into the earth’s atmosphere, adding to climate change. Currently scientists figuring out what causes differences in how much of each type of greenhouse gas soils emit.3GLBRC, Kellogg Biological Station, Michigan
Are forests helping in the fight against climate change?climate change, ecology, environmental, greenhouse gasses, photosynthesis, plantsIn the 1990s, scientists began to wonder what role forests were having in the exchange of carbon in and out of the atmosphere. Were forests overall storing carbon (carbon sink), or releasing it (carbon source)? To test this, they built large metal towers that stand taller than the forest trees around them and use sensors to measure the speed, direction, and CO2 concentration of each puff of air that passes by. These long term measurements can tell us whether forests help in the fight against climate change.3Harvard Forest LTER, Massachusetts
Sink or source? How grazing geese impact the carbon cyclecarbon cycle, Arctic, wetlands, primary production, photosynthesis, respiration, climate change, birds, ecologyWhen geese graze on wetland plants, they remove plant matter, potentially decreasing the amount of carbon dioxide, or CO2, that is released during photosynthesis. This is important because it could change whether this ecosystem is a carbon sink or a carbon source. We want ecosystems to be carbon sinks because then they keep CO2 out of the atmosphere, where it contributes to global warming.3Yukon-Kuskokwim Delta, Alaska
Cackling Goose next to a pile of goose poop, or fecesPoop, poop, goose!wetlands, Arctic, carbon cycle, climate change, disturbance, ecology, environmental, greenhouse gasses, birdsEach spring, millions of birds return to the Y-K Delta to breed. With all these geese coming together in one area, they create quite a mess – they drop tons of poop onto the soil. So much poop in fact, that scientists wonder whether poop from this area in Alaska could have a global impact! 3Yukon-Kuskokwim Delta, Alaska
Going underground to investigate carbon locked in soilsclimate change, ecology, environmental, greenhouse gasses, soil carbon, microbes, chemistry, agricultureSoil is an important part of the carbon cycle because it traps carbon, keeping it out of the atmosphere and locked underground. Carbon enters the soil when plants and animals die, and their organic matter is decomposed by soil bacteria and fungi. Climate affects rates of decomposition, and therefore may affect how much carbon becomes stable and attached to minerals in the soil, feeding back to affect climate change. 3Indiana University
The carbon stored in mangrove soilscarbon, climate change, disturbance, ecology, nutrients, greenhouse gasses, mangrove, plantsMangroves are globally important for many reasons. They form dense forested wetlands that protect the coast from erosion and provide critical habitat for many animals. Mangrove forests also help in the fight against climate change by storing carbon in their soils. The balance between how much carbon is added to the soils and how much is released might be dependent on a variety of factors, including tree size and amount of disturbance to the site.2Biscayne National Park, Florida Everglades
mangrove in marshMangroves on the moveclimate change, ecology, environmental, fertilization, nitrogen, nutrients, phosphorus, plants, mangroveOne day out in the saltmarsh, scientists noticed something strange. A mangrove shrub was growing in a place they had not been seen before! Are the fertilizers washing into the saltmarsh from nearby urban areas responsible for this shocking discovery?2Guana-Tolomato-Matanzas National Estuarine Research Reserve, Florida
Which tundra plants will win the climate change race?climate change, nutrients, long-term data, competition, plants, ecologyWhile you might think of the arctic tundra as a blanket of snow and polar bears, this vast landscape supports a diversity of unique plant and animal species. Climate change is altering the arctic environment. With warmer seasons and fewer days with snow covering the ground, soils are thawing more deeply and becoming more nutrient-rich. With more nutrients available, will some plant species be able to outcompete other species by growing taller and making more leaves than other plant species?3Toolik Field Station, Alaska
Streams as sensors: Arctic watersheds as indicators of changeclimate change, ecology, environmental, carbon, nitrogen, permafrostAs the world warms from climate change, the Alaskan Arctic is heating up. This is causing permafrost, or the frozen underground layer of rock and ice, to melt. When permafrost melts, plant material that has been stored for thousands of years begins to decay, releasing carbon and nitrogen from the system. Ecologists can act like “ecosystem accountants” measuring the balance of material that goes into and out of these systems.3Toolik Field Station, Alaska
Limit by limit: Nutrients control algal growth in Arctic streamsclimate change, ecology, environmental, nitrogen, nutrients, phosphorusAquatic algae, a type of microbe that live in the water, need to take in nutrients from their surroundings for growth. Two important nutrients for algal growth are nitrogen (N) and phosphorous (P). Climate change may be altering which nutrients are limiting to algae, changing food webs in the ecosystem.3Toolik Field Station, Alaska
DSC_0060Cheaters in nature – when is a mutualism not a mutualism?evolution, legume, plants, mutualism, parasitism, rhizobia, nitrogen, fertilization, agricultureMutualisms are a special type of relationship in nature where two species work together and both benefit. This cooperation should lead to each partner species doing better when the other is around – without their mutualist partner, the species will have a harder time acquiring resources. But what happens when one partner cheats and takes more than it gives?4Kellogg Biological Station, Michigan
DSC_0060Fair traders or freeloaders?evolution, legume, plants, mutualism, rhizobia, nitrogen, fertilization, agricultureOne example of a mutualism is the relationship between a type of bacteria, rhizobia, and plants like peas, beans, soybeans, and clover. Rhizobia live in bumps on the plant roots, where they trade their nitrogen for sugar from the plants. Rhizobia turn nitrogen from the air into a form that plants can use. Under some conditions, this mutualism could break down, for example, if one of the traded resources is very abundant in the environment.3Kellogg Biological Station, Michigan
DSC_0060Does a partner in crime make it easier to invade?legume, plants, mutualism, rhizobia, invasive species, soilInvasive plants are species that have been transported by humans from one location to another, and grow and spread quickly compared to other plants. Mutualisms can affect what happens when a plant species is moved somewhere it hasn’t been before. For invasive legumes with rhizobia mutualists, there is a chance that the rhizobia will not be transported with it and the plant will have to form new relationships with rhizobia in the new location.3Kellogg Biological Station, Michigan
Fast weeds in farmer’s fieldsadaptation, agriculture, evolution, plants, heredity, geneticsWeeds in agricultural fields cost farmers $28 billion per year in just the United States alone. One of the world’s worst weeds is weedy radish, which evolved from native radish not very long ago. While weedy radish is able to take over agricultural fields, native radish cannot. What causes this difference? Perhaps it could be due to the weedy radish’s ability to flower quickly and make seeds before crops are harvested.2Kellogg Biological Station, Michigan
What big teeth you have! Sexual selection in rhesus macaquesanimals, evolution, sexual selection, sexual dimorphismIn Cayo Santiago there is one of the oldest free-ranging rhesus macaque colonies in the world. Scientists have gathered data on these monkeys and their habitat for over 70 years. The program monitors individual monkeys over their entire lives, and when they die their bodies are recovered and skeletal specimens are stored in a museum. These skeletal specimens can be used by scientists today to ask new and exciting questions, for example, what traits are under sexual selection in this population?3Laboratory of Primate Morphology, University of Puerto Rico Medical Sciences Campus
Is it better to be bigger?adaptation, animals, evolution, predationBrown anoles are very small when they hatch out of the egg. Because of their small size, these anole hatchlings are eaten by many different animals, including birds, crabs, other species of anole lizards, and even adult brown anoles! Predators could be a significant force of natural selection on brown anole hatchlings. Juvenile anoles that get eaten by predators will not survive to reproduce.3Matanzas River, Florida
Is it dangerous to be a showoff?adaptation, animals, evolution, predation, tradeoff, sexual dimorphismBrown anoles are small lizards that are abundant in Florida. They have an extendable red and yellow flap of skin on their throat, called a dewlap. To communicate with other brown anoles, they extend their dewlap and move their head and body. Males have particularly large dewlaps, which they often display to defend territory or attract females. Females also have dewlaps but use them less often. How might natural selection on this trait differ between males and females?3Matanzas River, Florida
Hold on for your life! Part Iadaptation, animals, disturbance, evolution, natural selection, genetic drift, hurricaneIn the fall of 2017, a team of scientists from Harvard University and the Paris Natural History Museum visited Pine Cay and Water Cay in the Turks and Caicos Islands. They were there to collect data on a small local lizard, the Turks and Caicos anole, as part of a larger environmental conservation project. Unbeknownst to them, a storm was brewing to the south of the islands, and it was about to change the entire trajectory of their research.3Turks and Caicos, Caribbean
Hold on for your life! Part IIadaptation, animals, disturbance, evolution, natural selection, genetic drift, hurricaneThe scientists needed to find out how lizards behave in hurricane-force winds. Obviously, they couldn’t stick around to watch lizards ride out a storm, so they designed a safe experiment that would simulate hurricane force winds. They bought the strongest leaf blower they could find, set it up in their hotel room on Pine Cay, and videotaped 40 lizards as they clung to a perch while slowly ramping up the leaf blower until the lizards were blown (unharmed) into a safety net.3Turks and Caicos, Caribbean
tad-toe-detachment-phelsuma_mediumSticky situations: big and small animals with sticky feetadaptation, animals, chemistry, physics, scale, surface areaSticky, or adhesive, toe pads have evolved in many different kinds of animals, including insects, arachnids, reptiles, amphibians, and mammals. The heavier the animal, the more adhesion they will need to stick and support their mass. For tiny species like mites and flies, tiny toes can do the job. Each fly toe only has to be able to support a small amount of weight. But when looking at larger animals like geckos, their increased weight means they need much larger toe pads to support them.4BEACON Center for the Study of Evolution in Action
DSC_0060Lizards, iguanas, and snakes! Oh my! animals, biodiversity, disturbance restoration, urbanPeople have dramatically changed the natural riparian habitat found along rivers and streams. In many urban areas today, these riparian habitats are being rehabilitated with the hope of bringing back native species, such as reptiles. Reptiles, including snakes and lizards, are extremely important to monitor as they play important roles in ecosystems. Are rehabilitation efforts in Phoenix successful at restoring reptile diversity and abundance?3Salt River, Phoenix, Arizona
Blinking out?agriculture, insects, population, biodiversity, ecologyMany people have fond memories of watching fireflies blink across open fields and collecting them in jars as children. This is one of the reasons why fireflies are a beloved insect species. However, there is concern that their populations are in decline. Scientists turned to the longest-running study of fireflies known to science to see if this is the case!2Kellogg Biological Station, Michigan
DSC_0060Urbanization and estuary eutrophicationalgae, eutrophication, fertilization, marine, nitrogen, phosphorus, wetland, urbanEstuaries are very productive habitats found where freshwater rivers meet the ocean. They are important natural filters for water and protect the coast during storms. A high diversity of plants, fish, shellfish and birds call estuaries home. Estuaries are threatened by eutrophication, or the process by which an ecosystem becomes more productive when excess nutrients are added to the system. Parts of the Plum Island Estuary in MA may be more at risk from eutrophication due to their proximity to urban areas.4Plum Island Estuary, Massachusetts
Love that dirty waterenvironmental, urban, water, GIS, landscapes, impervious surfaces, ecosystem servicesAs green spaces are lost to make room for homes and businesses, there are fewer forests and wetlands to filter our drinking water. A team of scientists used the New England Landscapes Future Explorer to study this challenge for the Merrimack River, an important river for the people of New England. 4New England
DSC_0060Green Crabs: Invaders in the Great Marshanimals, invasive species, substrate, wetland, erosionThe introduction of invasive species, such as the European Green Crab, poses a great threat to marshes. Digging behaviors of the Green Crab disturb sediments on the marsh floor and may have lead to the destruction of native eelgrass populations, which are sensitive to disturbance. Scientists aimed to identify locations where crab numbers are low and eelgrass can be restored.2Essex Bay, Massachusetts
DSC_0060The mystery of Plum Island Marshfertilization, fish, marine, mollusk, water, wetlandSalt marshes are among the most productive coastal ecosystems, and support a diversity of plants and animals. Algae and marsh plants feed many invertebrates, like snails and crabs, which are then eaten by larger fish and birds. In Plum Island, scientists have been fertilizing and studying salt marsh creeks to see how added nutrients affect the system. They noticed that fish populations seemed to be crashing in the fertilized creeks, while the mudflats were covered in mudsnails. Could there be a link?3Plum Island Estuary, Massachusetts
DSC_0060Does sea level rise harm saltmarsh sparrows?animals, birds, sea level rise, climate change, disturbance, ecology, wetlandFor the last 100 years, sea levels around the globe have increased dramatically. Salt marshes grow right at sea level and are therefore very sensitive to sea level rise. Saltmarsh sparrows rely completely on salt marshes for feeding and nesting, and therefore their numbers are expected to decline as sea levels rise and they lose nesting sites. Will this threatened bird species decline over time as sea levels rise?3Plum Island Estuary, Massachusetts
DSC_0060Keeping up with the sea levelclimate change, disturbance, ecology, sea level rise, plants, substrate, wetlandSalt marshes are very important habitats for many species and protect the coast from erosion. Unfortunately, rising sea levels due to climate change are threatening these important ecosystems. As sea levels rise, the elevation of the marsh soil must rise as well so the plants have ground high enough to keep them above sea level. Basically, it is like a race between the marsh floor and sea level to see who can stay on top! 3Plum Island Estuary, Massachusetts
DSC_0060Is your salt marsh in the zone?climate change, ecology, plants, sea level rise, substrate, wetlandBeginning in the 1980s, scientist James began measuring the growth of marsh grasses. He discovered that their growth was higher in some years and lower in others and that there was a long-term trend of growth going up over time. Marsh grasses grow around mean sea level, or the average elevation between high and low tides. Are the grasses responding to mean sea level changing year-to-year, and increasing as our oceans warm and water levels rise due to climate change?3Plum Island Estuary, Massachusetts
The case of the collapsing soilclimate change, carbon, ecology, plants, phosphorus, sea level rise, respiration, substrate, wetlandThe Everglades are a unique and vital ecosystem threatened by rising sea levels due to climate change. Recently scientists have observed in some areas of the wetland the soils are collapsing. What is causing this strange phenomena? Sea level rise might be stressing microbes, causing carbon to be lost to the atmosphere through increased respiration.4Everglades, Florida
DSC_0060Marvelous mudecology, environmental, fertilization, mud, phosphorus, substrate, water, wetlandBecause mud is wet most of the time, it tends to have different properties than soil. Dead organic matter (partially decomposed plants) is an important part of mud and tends to build up in wetlands because it is decomposed more slowly under water where microbes do not have all the oxygen they need to break it down quickly. The amounts of organic matter may determine the levels of phosphorus and other nutrients held in wetland muds.2Fort Custer Recreation Area, Michigan
Marsh makeoverbiodiversity, disturbance, ecology, greenhouse gasses, mud, plants, restoration, wetlandThe muddy soils in salt marshes store a lot of carbon, compared to terrestrial dry soils. This is because they are low in oxygen needed for decomposition. For this reason they play a key role in the carbon cycle and climate change. If humans disturb marshes, reducing plant diversity and biomass, are they also disturbing the marsh's ability to sequester carbon? If a marsh is restored, can the carbon holding capacity also be brought back to previous levels?3Oak Island and Neponset Marsh, Boston, Massachusetts
DSC_0060Dangerously boldanimal behavior, animals, tradeoff, fish, predationThere are two main habitats that young bluegill sunfish can use to find food to eat – open water and cover. There is lots of food in the open water, but this habitat also has very few plants for bluegill to hide from predators, like the largemouth bass, so it’s not safe when bluegill are small! The cover habitat has less food, but it has lots of plants that make it hard for predators to see the bluegill. This sets up a situation where there are costs and benefits to using either habitat, called a tradeoff.1Pond Lab, Kellogg Biological Station, Michigan
DSC_0060Which guy should she choose?animal behavior, animals, fish, matingMating behavior is intriguing to study because in many animal species, males use a lot of energy to attract a female. Yet some males are able to attract zero females and other males attract many females. What accounts for this difference? What about the way a male looks, moves, or smells attracts the female? A female could benefit from identifying “high quality” males that would serve as a good father to her offspring or that would make offspring that are attractive to females in the next generation.2Michigan State University lab and British Columbia, Canada
DSC_0060Fish fightsanimal behavior, animals, fish, matingMale stickleback fish fight each other to gain territories along the bottom of the shallow areas of a lake. In these territories, males build a nest out of sand, aquatic plants, and glue they produce from their kidneys. Males then attract females to their territories with courtship dances. If a female likes a male, she will deposit her eggs in his nest. Then the male will care for those eggs and the offspring that hatch. Perhaps more aggressive males are better at defending their territory and nests.2Michigan State University lab and British Columbia, Canada
Clique wars: social conflict in daffodil cichlidsanimal behavior, animals, competition, fishDaffodil cichlids live in social groups of several small fish and one breeding pair. The breeding male and female are the largest fist in the group, and the smaller fish help defend territory against predators and help care for newly hatched baby fish. About 200 social groups together make up a colony. Behavior within a social group may be influenced by the presence of other groups in the colony. For example, neighboring groups can be a threat because they may try to take away territory or resources.4The Ohio State University, Ohio
Fishy originscitizen science, DNA, evolution, fish, PCR, marineThe population of striped bass in New Jersey is a mixed stock, meaning fish come together from different spawning grounds. Scientists want to understand where these fish come from in order to better manage their population. For their study, they needed DNA from many fish, so they turned to fishermen to help collect fin clip samples. They used these samples to identify the stocks migrating to New Jersey, and to determine if they was changing over time.4Monmouth University
DSC_0060Salmon in hot wateradaptation, animals, climate change, evolution, fish, genes, temperature, heredity, geneticsSalmon are important members of freshwater and ocean food webs. Climate change threatens salmon by warming the waters of rivers where they reproduce. To maintain healthy populations, salmon rely on cold, freshwater habitats and may go extinct as temperatures rise. However, some salmon individuals have higher thermal tolerance and are able to survive when water temperatures rise. Scientists want to know whether there is a genetic basis for the variation observed in salmon’s thermal tolerance.4University of Washington Hatchery, Seattle, Washington
6298983_origAre you my species?adaptation, animals, behavior, biodiversity, competition, evolution, fish, matingHow do animals know who to choose as a mate and who is a member of their own species? One way is through communication. Animals collect information about each other and the rest of the world using multiple senses, including sight, sound, and smell. Darters are a group of over 200 colorful fish species that live in lakes and rivers across the US. The bright color patterns on males may signal to females during mating who is a member of the same species and who would make a good mate.3University of Maryland, Baltimore
Why so blue? The determinants of color pattern in killifish, Part Iadaptation, animals, biodiversity, evolution, fish, genes, mating, heredity, geneticsIn nature, animals can be found in a dazzling display of different colors and patterns. Even within one species there can be variation in color. For example, male bluefin killifish can have fins that are bright blue, red, or yellow. Becky, a scientist studying this species noticed an interesting pattern - males found in springs with crystal clear water have mostly red or yellow fins, while males found in swamps have bright blue fins. Becky wants to know, what is the driving mechanism behind this interesting pattern?4University of Illinois, Illinois
Why so blue? The determinants of color pattern in killifish, Part IIadaptation, animals, biodiversity, evolution, fish, genes, mating, heredity, geneticsTo take a closer look at her data, Becky added information on paternal fin color into her analysis.4University of Illinois, Illinois
cricketsBon Appétit! Why do male crickets feed females during courtship?adaptation, animals, behavior, competition, insects, matingIn many species of insects and spiders, males provide females with gifts of food during courtship and mating. This is called nuptial feeding. These offerings are eaten by the female and can take many forms, including prey items the male captured, substances produced by the male, or parts from the male’s body. These gifts can cost the male a lot, so why do they give them? They may increase the male's chances of mating with a female, or they may help the female have more and healthier offspring.4Cornell University, New York
Stop that oxidation! What fruit flies teach us about human healthinsects, model species, cell biology, genetics, cellular processes, oxidationEach of our cells is home to mitochondria, tiny factories whose job is to turn the food we eat into the energy we need to live. But during this process oxidative damage can cause harm to everything in the cell. There are two ways that bodies can prevent oxidative damage: antioxidants and more efficient metabolic pathways. Biz looked at fruit flies with varying genetics for these two strategies and wanted to test whether the level of oxidative damage in eggs and sperm would influence how many offspring a female had.4Technische Universität Dresden
Did you hear that? Inside the world of fruit fly mating songsanimals, communication, insect, process of science, reproducibility, volume, social, behaviorEmma is a neuroscientist who is really interested in studying how brains are able to understand all kinds of communication. She uses fruit flies to figure out how brains process communication through sounds. Emma wanted to test whether lab conditions, such as volume of playback sounds and social isolation affected whether fruit flies in her lab performed a behavior called chaining that had been observed in other labs. 2North Carolina State University
DSC_0060How to escape a predatoradaptation, animal behavior, animals, predation, physiologyStalk-eyed flies have their eyes at the tip of eyestalks on the sides of their heads. Males with longer eyestalks are better at attracting mates – females find them sexy! However, long eyestalks may come at a cost. Males with long eyestalks may not be able to move easily and quickly, and could be easy targets for predators. Males also use a variety of behaviors to defend themselves against predators. Are these behaviors enough to compensate for long eyestalks?4Washington State University and University of Colorado, Denver
DSC_0060The flight of the stalk-eyed flyphysics, moment of inertia, adaptation, animals, flight, physiologyMoment of inertia (I) is an object’s tendency to resist rotation – in other words how difficult it is to make something turn. Stalk-eyed flies have eyes located on the ends of long projections on the sides of their head, called eyestalks. Because moment of inertia goes up with the square of the distance from the axis, we might expect that as the length of the flies’ eyestalks goes up, the harder and harder it will be for the fly to maneuver during flight.4Tel-Aviv University, Israel and University of Colorado, Denver
flyfightHow do brain chemicals influence who wins a fight?animals, behavior, competition, insects, aggression, brain chemistry, physiologyAnimals compete for resources, including space, food, and mates. What are the factors that determine who wins in a fight? Within the same species, larger individuals tend to win fights. However, if two opponents are the same size, other factors can influence outcomes. Serotonin is a chemical compound found in the brains of all animals, including stalk-eyed flies. Even a small amount of this chemical can make a big impact on aggressive behavior, and perhaps the outcome of competition.2University of Colorado, Denver and University of South Dakota
David vs. Goliathanimals, behavior, competition, insects, aggression, brain chemistry, physiologyAnimals in nature often compete for limited resources, like food, territory, and mates. Who wins a battle depends on lots of factors, such as size, aggression, and brain chemistry. In stalk-eyed flies, is a change in brain chemistry enough to tip the balance for smaller males to win in battle?3University of Colorado, Denver and University of South Dakota
Size matters - and so does how you carry it!adaptation, animals, evolution, insects, sexual selection, tradeoffsSome animals have evolved special traits that advertise their fitness to potential mates. Scientists have long predicted that these traits come with both benefits and costs, but John and Jerry have not found costs to the long eye stalks of stalk-eyed flies. Could there be a different answer? In this activity, the team looks at how wing size could play a role.3University of Colorado, Denver and University of St. Thomas
Which would a woodlouse prefer?animals, behavior, ecology, predationWoodlice are small crustaceans that live on land. They look like bugs, but are actually more closely related to crabs and lobsters. To escape predators they hide in dark places. They spend most of their time underground and have very poor eyesight. If they can't see very well, how do they decide where to live?2Kellogg Biological Station, Michigan
Crunchy or squishy? How El Niño events change zooplanktonalgae, animals, marine, El NiñoEl Niño events happen every 5 to 10, and in California they cause the ocean to be much warmer than usual. Warm ocean waters during El Niño events have lower nutrient levels, so fewer phytoplankton grow leading to less food available for zooplankton. This may cause a change balance between the two main groups of zooplankton, “crunchy” crustaceans and “squishy” gelatinous animals. These changes could have cascading effects up the food chain.3San Diego, California
DSC_0060Dangerous aquatic prey: can predators adapt to toxic algae?adaptation, algae, evolution, marine, predationPhytoplankton are microscopic algae that form the base of all aquatic food chains. Some phytoplankton produce toxins, and when these algae reach high population levels it is known as toxic algal blooms. Can predators feeding on toxic prey for many generations evolve resistance, by natural selection, to the toxic prey?4Maine and New Jersey
DSC_0060Finding a footholdanimals, ecology, marine, substrate, waterThe ground at the beach is made of rocks of many different sizes, called substrates. These can range from large boulders down to fine grains of sand, with many size variations in between. Just like there are different types of substrates, there are different types of organisms that can live there. How can we determine which types of organisms prefer which types of substrates?2Puget Sound, Washington
DSC_0060Invasive reeds in the salt marshdisturbance, invasive species, plants, wetlandPhragmites australis is an invasive reed that is taking over saltwater marshes of New England, outcompeting other plants that serve as food and homes for marsh animals. Once Phragmites has invaded, it is sometimes the only plant species left, called a monoculture. Phragmites does best where humans have disturbed a marsh, and scientists were curious why that might be. They thought that perhaps it was caused by changing salinity, or amount of salt in the water, after a marsh is disturbed.2Ipswich High School, Massachusetts
DSC_0060Can a salt marsh recover after restoration?disturbance, ecology, invasive species, plants, wetland, salinity, restorationBefore restoration began, it was clear the Saratoga Creek salt marsh was in trouble. Invasive Phragmites plants covered large areas of the marsh, crowding out native plants and animals. Human activity was thought to be the culprit – storm drains were dumping freshwater into the marsh, lowering salinity. In 1999 a restoration took place to divert freshwater away from the marsh in an attempt to reduce Phragmites numbers. Did it work?2Saratoga Creek Salt Marsh, Rockport, Massachusetts
DSC_0060Make way for mummichogsanimals, biodiversity, disturbance, fish, restoration, wetlandMummichogs are small fish that live in tidal marshes all along the US Atlantic coast. Because they are so widespread and can be found in most streams, they are a valuable tool for scientists looking to compare the health of different marshes. The absence of mummichogs in a salt marsh is a sign that it is highly damaged. Students collected data on mummichog numbers before and after a marsh restoration. Did the restoration successfully bring back mummichogs to the marsh?4Gloucester, Massachusetts
Surviving the flooddisturbance, urban, stream, floods, photosynthesis, respiration, stormwaterStreams are found everywhere, including cities. Urban streams are surrounded by buildings, roads, and parking lots, which can make rain from storms flow through the system very quickly. But how do these rapid flooding events affect the organisms that live there? Andrew and Dave used photosynthesis and respiration from algae to take a closer look!4Mill Creek, Ohio
All washed up? The effect of floods on cutthroat troutanimals, disturbance, ecology, fish, water, stream, floodsFloods are very common disturbances in streams. If floods happen right after fish breed and eggs hatch, young fish that cannot swim strongly may not survive. Although floods can be dangerous for fish, they are also very important for creating new habitat. Cutthroat trout are a species of fish living in Mack Creek, which experiences occasional floods. Trout breed in the early spring, right at the peak of flooding, so scientists are collecting long-term data on this species. Will floods hurt trout populations or help?2Mack Creek, HJ Andrews Experimental Forest, Oregon
DSC_0060Float down the Kalamazoo Riverriver, water, suspended solids, dam, reservoirThere is a lot more in river water than you might think! As the river flows, it picks up bits of dead plants, algae, and other living and non-living particles from the bottom of the river. These suspended solids are important for the river food web, but can be influenced by human activities, such as the construction of dams.2Kalamazoo River, Michigan
An invasive round goby from the Kalamazoo River, Michigan.Round goby, skinny gobylocal adaptation, rapid evolution, animals, biodiversity, fish, Great Lakes, habitat, invasive species, riverWhen invasive species are moved to new habitats, they often have traits that aren’t matched to their new conditions. However, invasive species may be able to adapt in just a few generations. The round goby is a small invasive fish species that arrived in the Great Lakes around 1990, and is now invading rivers as well. Is there evidence that this species has evolved in response to the different conditions found in rivers and lakes?3Kalamazoo River and Great Lakes, Michigan
sweeden1Winter is coming! Can you handle the freeze?local adaptation, ecology, evolution, genes, plantsDepending on where they live, plant populations each face their own challenges. For example, in Arabidopsis thaliana there are some populations of this species growing in very cold habitats, and some populations growing in very warm habitats. The idea that populations of the same species have evolved as a result of certain aspects of their environment is called local adaptation.4Michigan State University, Michigan
adam_microscopeGene expression in stem cellsgene expression, stem cells, geneticsEvery cell in your body contains the same DNA. Genetically identical skin, brain, and muscle cells can look very different and perform very different functions by turning particular genes on and off. But once they differentiate, their role in the body is fixed. Unlike these cells, stem cells have the ability to turn into any other type of cell in the body. Can we uncover the genes expressed in stem cells that give them that ability?4Colorado State University, Colorado
Alien life on Mars – caught in crystals?astrobiology, salt, solution, Mars, extraterrestrial life, chemistryIs there life on other planets besides Earth? This question is not just for science fiction. Scientists are actively exploring the possibility of life on Mars. Mars is cold, dry, and has a very thin atmosphere. However, there might still be places on Mars where life could exist, despite its extreme conditions. While there is no liquid water on the surface of Mars anymore, it once had a saltwater ocean covering much of its surface. Certain solutions of salt may trap liquid water in pockets as it evaporates, preserving conditions for life.2UK Centre for Astrobiology, University of Edinburgh, Great Britain
Working to reduce the plastics problemplastics, synthetic materials, chemistry, biodegradable, elastomer, polymer, monomer, stress, strainPlastics can be shaped easily and are used for many functions, making them extremely popular across the world. However, most plastics negatively impact the environment and some can take thousands of years or longer to break down. Scientists are testing new ways to make plastics that are biodegradable so they can be decomposed and won’t last as long in the environment. How can researchers use knowledge about the chemical properties of different monomers to make alternatives for synthetic plastics? 3Northland College, Wisconsin

Is chocolate for the birds?

Cocoa beans used to make chocolate!

Cocoa beans used to make chocolate!

The activities are as follows:

About 9,000 years ago humans invented agriculture as a way to grow enough food for people to eat. Today, agriculture happens all over the globe and takes up 40% of Earth’s land surface. To make space for our food, humans must clear large areas of land, which creates a drastic change, or disturbance, to the habitat. This land-clearing disturbance removes the native plants already there including trees, small flowering plants, and grasses. Many types of animals including mammals, birds, and insects depend on these native plants for food or shelter. Large scale disturbances can make it difficult to live in the area. For example, a woodpecker bird cannot live somewhere that has no trees because they live and find their food in the trees.

However, some agriculture might help some animals because they can use the crops being grown for the food and shelter they need to survive. One example is the cacao tree, which grows in the rainforests of South America. Humans use the seeds of this plant to make chocolate, so it is a very important crop! Cacao trees need very little light. They grow best in a unique habitat called the forest understory, which is composed of the shorter trees and bushes under the large trees found in rainforests. To get a lot of cacao seeds for chocolate, farmers need to have large rainforest trees above their cacao trees for shade. In many ways, cacao farms resemble a native rainforest. Many native plant species grow there and there are still taller tree species. However, these farms are different in important ways from a native rainforest. For example, there are many more short understory trees in the farm than there are in native rainforests. Also, there are fewer small flowering plants on the ground because humans that work on cacao farms trample them as they walk around the farm.

rainforest and cacao plantation

Part I: Skye is a biologist who wanted to know whether rainforest birds use the forest when they are disturbed by adding cacao farms. Skye predicted she would see many fewer birds in the cacao farms, compared to the rainforest. To measure bird abundance, she simply counted birds in each habitat. To do this she chose one rainforest and one cacao farm and set up two transects in each. Transects are parallel lines along which the measurements are taken. She spent four days counting birds along each transect, for a total of eight days in each habitat. She had to get up really early and count birds between 6:00 and 9:00 in the morning because that’s when they are most active.

Part II: Skye was shocked to see so many birds in cacao farms! She decided to take a closer look at her data. Skye wanted to know how the types of birds she saw in the cacao farms compared to the types of birds she saw in the rainforest. She predicted that cacao farms would have different types of birds than the undisturbed rainforest. She thought the bird types would differ because each habitat has different types of food available for birds to eat and different types of plants for birds to live in.

Skye broke her abundance data down to look more closely at four types of birds:

  1. Toucans (Eat: large insects and fruit from large trees, Live: holes in large trees)
  2. Hummingbirds (Eat: nectar from flowers, Live: tree branches and leaves)
  3. Wrens (Eat: small insects, Live: small shrubs on the forest floor)
  4. Flycatchers (Eat: Small insects, Live: tree branches and leaves)

skyecacao

Featured scientist: Skye Greenler from Colorado College and Purdue University

Flesch–Kincaid Reading Grade Level = 8.5

Additional teacher resources related to this Data Nugget:

  • The research described in this activity has been published. The citation and a PDF of the scientific paper can be found here:
  • The complete dataset for the study has been published to a data repository and is available for classroom use. This dataset has even more data than what is in the Data Nugget activity. While the Data Nugget has data for just two habitats (cacao and rainforest), the full dataset also includes two other agroforest habitat types. The dataset also includes data for every species (169) recorded during the study, whereas the Data Nugget only has data for four families (toucans, wrens, flycatchers, hummingbirds).
  • Study Location: Skye’s study took place in a 10 km2 mixed rainforest, pasture, agro-forest, and monoculture landscape near the village of Pueblo Nuevo de Villa Franca de Guácimo, Limón Province, Costa Rica (10˚20˝ N, 83˚20˝ W), in the Caribbean lowlands 85 km northeast of San José.
  • For more background on the importance of biodiversity, students can eat this article in The Guardian – What is biodiversity and why does it matter to us?

About Skye: As a child Skye was always asking why; questioning the behavior, characteristics, and interactions of plants and animals around her.  She spent her childhood reconstructing deer skeletons to understand how bones and joints functioned and creating endless mini-ecosystems in plastic bottles to watch how they changed over time.  This love of discovery, observation, questioning, and experimentation led her to many technician jobs, independent research projects, and graduate research study at Purdue University.  At Purdue she studies the factors influencing oak regeneration after ecologically based timber harvest and prescribed fire.  While Skye’s primary focus is ecological research, she loves getting to leave the lab and bring science into classrooms to inspire the next generation of young scientists and encourage all students to be always asking why!

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

Data Nuggets in the classroom

TitleContent LevelScience Concepts / KeywordsQuantitative Concepts / StatisticsGraph Type(s)Variable Type(s)Data Type(s)
Dangerously bold1animals, animal behavior, tradeoff, fish, predation, biological significancepercent, standard error (SE), predictionsbarcategoricalsummarized, Digital Data Nugget
Coral bleaching and climate change1climate change, coral reef, marine, mutualism, temperature, animals, algae, adaptation, evolutionratiobarcategoricalsummarized
Won’t you be my urchin?1coral reef, herbivory, marine, sea urchin, water, animals, competition, food webmean, models, standard error (SE), standard deviation (SD)barcategoricalraw
Springing forward1 & 3climate change, phenology, plants, temperaturemean, standard error (SE), Julian datebarcategoricalsummarized, full dataset available, Digital Data Nugget
Do urchins flip out in hot water?1 & 3animals, climate change, marine, heatwaves, urchins, behavior, invertebrates, environmental changeaverage, mean, standard error, calculationbarcategorical, continuoussummarized, two levels available,
Do insects prefer local or foreign foods?2herbivory, invasive species, plants, insects, enemy release, ecologymean, variance, standard deviation (SD), standard error (SE), confidence intervals (CI), predictionsbarcategoricalsummarized, full dataset available, Digital Data Nugget
Spiders under the influence2animals, invertebrates, habitat, chemical pollution, aquatic, streams, scientist profilemean, multiple variablesmultiple barcategoricalfull dataset, students summarize
Do invasive species escape their enemies?2herbivory, invasive species, plants, insects, enemy release, ecologymean, percentbarcategoricalsummarized
Lake Superior Rhythms2amplitude, aquatic, atmosphere, environmental, physics, student research, wave period, wavescycle, sine wave, amplitude, change over timesine wavecontinuoussummarized, full dataset available
All washed up? The effect of floods on cutthroat trout2animals, disturbance, ecology, fish, water, stream, floods, alternative hypotheses, limnologyregression, ratio, rate, graph choice, unnecessary variables, long-term datascattercontinuousraw, Digital Data Nugget
Float down the Kalamazoo River2Kalamazoo River, water, suspended solids, dam, reservoir, limnologymean, ratio, rate, standard deviation (SD), standard error (SE), Julian date, unnecessary variablesbar, linecategorical, continuoussummarized, Digital Data Nugget
Finding a foothold2animals, ecology, marine, substrate, waterfrequency, proportionbarcategoricalsummarized
Is chocolate for the birds?2experimental design, agriculture, animals, birds, biodiversity, rainforest, succession, disturbance, transect, habitataddition, unnecessary variablesbarcategoricalraw, full dataset available
Fish fights2animal behavior, animals, fish, matingmean, proportion, regressionscattercontinuoussummarized, Digital Data Nugget
Marvelous mud2ecology, environmental, fertilization, mud, phosphorus, substrate, water, wetland, limnologypercent, regression, graph choicescattercontinuoussummarized
Which guy should she choose?2animal behavior, animals, fish, matingfrequency, regression, correlation vs. causationscattercontinuousraw, summarized
Sexy smells2adaptation, animal behavior, animals, birds, matingpercent, regression, correlation vs. causationscattercontinuousraw, Digital Data Nugget
Shooting the poop2adaptation, animal behavior, animals, insects, predation, alternative hypothesesmean, standard error (SE)barcategoricalraw
Invasive reeds in the salt marsh2disturbance, invasive species, plants, wetland, limnology, transectmean, percentbarcategoricalraw, summarized
A tail of two scorpions2animal behavior, animals, predationaddition, proportion, ratio, graph choicebar, stacked bar, pie chartcategoricalraw, Digital Data Nugget
Green crabs: invaders in the Great Marsh2animals, invasive species, substrate, wetland, erosion, limnologyaddition, range, mapmapcategorical, spatialraw, summarized
Guppies on the move2animals, aquatics, behavior, ecology, genetics, migration, movement, tropicsregressionline, scattercategorical, continuousraw, full dataset available
The birds of Hubbard Brook, Part I2animals, biodiversity, birds, climate change, succession, disturbance, ecologycount, long-term dataline, scattercontinuousraw, full dataset available, Digital Data Nugget
Beetle battles2adaptation, animals, behavior, competition, evolution, insects, matingstandard error (SE)barcategoricalsummarized
How do brain chemicals influence who wins a fight?2animals, behavior, competition, insects, aggression, brain chemistry, physiologymeanbarcategoricalraw, summarized
Deadly windows2animals, animal behavior, birds, environmental, urban, alternative hypothesesaddition, proportionbarcategoricalsummarized
Which would a woodlouse prefer?2experimental design, animals, behavior, ecology, predationcount, Chi-square test, replication, sample sizebarcategoricalraw, Digital Data Nugget
Tree-killing beetles2animals, biodiversity, disturbance, ecology, environmental, insects, plantsmean, percent, proportion, regressionscattercontinuoussummarized
Alien life on Mars – caught in crystals?2astrobiology, salt, solution, Mars, extraterrestrial life, chemistry, physical sciencemean, time series linecontinuoussummarized, visual, full dataset available
Beetle, it’s cold outside!2animals, climate change, ectotherm, insects, temperaturemean, standard error (SE), modelslinecontinuoussummarized
Can a salt marsh recover after restoration?2disturbance, salinity, transect, invasive species, plants, wetland, restoration, limnologymean, percent, frequencybar, linecontinuoussummarized
Fast weeds in farmer’s fields2evolution, adaptation, agriculture, plants, fitness, heredity, geneticsfrequency, percent, mean, replication, sample size, unnecessary variablesbar, scattercontinuous, categoricalsummarized
The carbon stored in mangrove soils2carbon, climate change, disturbance, ecology, environmental, nutrients, greenhouse gasses, plants, transectproportion, mean, unnecessary variablesbarcontinuous, categoricalsummarized
Where to find the hungry, hungry herbivores2herbivory, plants, insects, ecology, latitude, longituderegression, standard deviation (SD), standard error (SE)scattercontinuoussummarized
A window into a tree’s world2climate change, dendrochronology, ecology, plants, temperaturemean, relative growth, graph choice, regression, correlation vs. causation, trend line, line, scattercontinuous, categoricalsummarized
Corals in a strange place2adaptation, coral reef, mangrove, morphology, structure and functionvisual data, countbar, stacked bar, pie chartcontinuoussummarized, full dataset available
Mangroves on the move2climate change, disturbance, ecology, environmental, fertilization, nitrogen, nutrients, phosphorus, plantsmean, standard error (SE)barcategorical, continuoussummarized
Getting to the roots of serpentine soil2soil, plasticity, limiting factors, plants, ecology, scientist profilemean, range, standard deviationbarcontinuous, categoricalsummarized
Blinking out?2agriculture, insects, population, ecology, biodiversity, fireflies, scientist profilemoving window, long-term data, standardize, sampling effort, division, count, unnecessary variablesline, scattercontinuous, categoricalsummarized, full dataset available, Digital Data Nugget
Buried seeds, buried treasure2germination, plants, seed bank, seed viability, scientist profilelong-term data, trendscattercontinuousraw
Mowing for monarchs, Part I2community science, citizen science, animals, behavior, biodiversity, community science, disturbance, ecology, plants, insects, alternative hypothesesaverage, time, rate, fractionbarcategoricalsummarized, full dataset available
A difficult drought2agriculture, biofuels, climate change, plants, carbon, fermentation, ethanol, chemistrymean, range, variability, replication, sample sizebarcontinuous, categoricalsummarized, full dataset available
Mowing for monarchs, Part II2community science, citizen science, animals, behavior, biodiversity, community science, disturbance, ecology, plants, insects, predation, alternative hypothesesaverage, time, rate, fractionbarcategoricalsummarized, full dataset available
Does more rain make healthy bison babies?2animals, ecology, keystone species, plants, prairie, precipitationmean, time, regression, long-term data, unnecessary variablesline, scattercontinuoussummarized, full dataset available
Benthic buddies2adaptation, animals, arctic, biodiversity, ecology, environmental, invertebrates, lagoons, marinemeanbarcategoricalsummarized
Did you hear that? Inside the world of fruit fly mating songs2animals, insect, process of science, reproducibility, communication, volume, social, behaviorcalculations, index, standard deviation, average, replicatebarcategorical, continuoussummarized
A burning question2biodiversity, canopy, ecology, fire ecology, forest, human impact, keystone species, land management, natural resourcesaverage, timebarcategorical, continuoussummarized
Are plants more toxic in the tropics?3herbivory, diversity, plants, insects, ecology, adaptation, chemistrystandard deviation (SD), standard error (SE), index, formulabarcategoricalsummarized
Does a partner in crime make it easier to invade?3legume, plants, mutualism, rhizobia, invasive species, soil, scientist profilemeanbarcategoricalsummarized
Fair traders or freeloaders?3evolution, legume, plants, mutualism, rhizobia, nitrogen, fertilizationmean, standard error (SE)barcategoricalsummarized
Fertilizing biofuels may cause release of greenhouse gasses3agriculture, biofuels, climate change, fertilization, greenhouse gases, nitrogen, plantsregressionscattercontinuoussummarized, full dataset available, Digital Data Nugget
The ground has gas!3climate change, temperature, greenouse gases, nitrogen, plantsregressionscattercontinuousraw, summarized, full dataset available
Growing energy: comparing biofuel crop biomass3agriculture, biofuels, climate change, fertilization, plants, carbonmean, standard error (SE)barcategoricalsummarized
How the cricket lost its song, Part I3adaptation, animal behavior, animals, rapid evolution, mating, parasitism, scientist profilepercentbarcategoricalraw, summarized
The mystery of Plum Island Marsh3fertilization, fish, food web, marine, mollusk, water, wetland, limnologymeanbarcategoricalraw
Invasion meltdown3climate change, ecology, invasive species, plants, temperaturemean, range, replication, sample sizebarcategoricalsummarized, full dataset available
Is your salt marsh in the zone?3climate change, ecology, plants, sea level rise, substrate, wetland, limnologymeanbarcategoricalraw
Lizards, iguanas, and snakes! Oh my!3animals, biodiversity, disturbance, restoration, urban, transectcount, additionbarcategoricalraw
What do trees know about rain?3climate change, dendrochronology, ecology, plants, precipitation, temperature, watermean, formula, equation, addition, multiplicationlinecontinuousraw, full dataset available
CSI: Crime Solving Insects3animals, insects, parasitismweighted meanbarcategoricalraw
Does sea level rise harm saltmarsh sparrows?3animals, birds, sea level rise, climate change, disturbance, ecology, wetland, limnologymean, standard deviation (SD)linecontinuoussummarized
Keeping up with the sea level3climate change, disturbance, ecology, sea level rise, plants, substrate, wetland, limnologyformula, equation, rateline, scattercontinuous, categoricalraw
The birds of Hubbard Brook, Part II3animals, biodiversity, birds, climate change, succession, disturbance, habitat, ecologycount, long-term dataline, scattercontinuous, categoricalraw, full dataset available, Digital Data Nugget
How the cricket lost its song, Part II3adaptation, animal behavior, animals, rapid evolution, mating, parasitism, scientist profilemeanbarcategoricalraw, summarized
Feral chickens fly the coop3adaptation, animals, behavior, birds, ecology, evolution, invasive species, mating, heredity, geneticsproportion, percentbarcategoricalraw, summarized
Raising Nemo: Parental care in the clown anemonefish3animals, behavior, coral reef, ecology, fish, marine, mating, tradeoff, plasticity, scientist profilemean, standard error (SE)barcategoricalraw
When a species can’t stand the heat3animals, climate change, disturbance, ecology, environmental, mating, temperature, sex ratioaddition, percent, ratio, regressionscattercontinuousraw, full dataset available, Digital Data Nugget
Are you my species?3adaptation, animals, behavior, biodiversity, competition, evolution, fish, matingformula, equation, addition, subtraction, division, regressionscattercontinuousraw
Marsh makeover3bodiversity, disturbance, ecology, greenhouse gases, mud, plants, restoration, wetland, limnologystandard error (SE)bar, linecategoricalraw, summarized
To bee or not to bee aggressive3animals, behavior, genes, insects, tradeoff, plasticity, aggressionmean, effect size, percent change, rangebarcategoricalsummarized, full dataset available, Digital Data Nugget
Why are butterfly wings colorful?3adaptation, animals, insects, models, predation, alternative hypothesesfraction, proportion, probabilitybarcategoricalsummarized
City parks: wildlife islands in a sea of cement3animals, biodiversity, ecology, urban, island biogeography, parks, camera trapShannon Wiener Index, formula, equation, sum, proportion, regressionscattercontinuoussummarized, full dataset available
Is it better to be bigger?3adaptation, animals, evolution, predation, natural selectionmean, percent, rate, regressionscattercontinuoussummarized, Digital Data Nugget
Is it dangerous to be a showoff?3adaptation, animals, evolution, predation, tradeoff, natural selectionpercent, rate, regressionscattercontinuous, categoricalsummarized
What big teeth you have! Sexual selection in rhesus macaques3adaptation, animals, evolution, sexual selection, sexual dimorphism, scientist profilemean, standard deviation (SD)barcontinuous, categoricalraw, Digital Data Nugget
Bringing back the Trumpeter Swan3animals, biodiversity, birds, ecology, environmental, restorationmean, long-term data, countlinecontinuous, categoricalraw, full dataset available, Digital Data Nugget
Are forests helping in the fight against climate change?3climate change, carbon, ecology, greenhouse gasses, photosynthesis, plants, decomposition, respirationregression, long-term datascattercontinuousraw
Can biochar improve crop yields?3agriculture, environmental, fertilization, plants, soil, water, biochar, carbonpercent, mean, standard deviation (SD), yield, replication, sample size, randomizationbarcontinuous, categoricalsummarized
Hold on for your life! Part I3adaptation, animals, disturbance, evolution, natural selection, genetic drift, hurricane, biological significance, alternative hypothesesargumentation, mean, standard error (SE)barcontinuous, categoricalsummarized
Hold on for your life! Part II3adaptation, animals, disturbance, evolution, natural selection, genetic drift, hurricaneargumentation, visual datavisualraw, photo, video
Testing the tolerance of invasive plants3ecology, herbivory, invasive species, plants, tolerancestatistical interaction, mean, standard error (SE)barcategoricalsummarized, full dataset available
Picky eaters: Dissecting poo to examine moose diets3animal behavior, animals, ecology, foraging, herbivory, parks, predator-prey1:1 line, proportion, mean, unnecessary variablesscattercontinuous, categoricalsummarized, full dataset available
Candid camera: capturing the secret lives of carnivores3animals, biodiversity, carnivores, ecology, island biogeography, richness, camera trap, parksregressionmap, scattercontinuoussummarized
Crunchy or squishy? How El Niño events change zooplankton3algae, animals, marine, El Niñooutlier, correlation vs. causation, unnecessary variablesline, scattercontinuousraw
Streams as sensors: Arctic watersheds as indicators of change3climate change, ecology, environmental, carbon, nitrogen, permafrost, limnologyunnecessary variables, regression, long-term datascattercontinuoussummarized
The end of winter as we’ve known it?3climate change, ice coverJulian date, mean, regression, messiness, variabilityscattercontinuoussummarized, full dataset available
Working to reduce the plastics problem3plastics, synthetic materials, chemistry, biodegradable, elastomer, polymer, monomer, stress, strain, physical sciencepercent, ratiolinecontinuoussummarized
Limit by limit: Nutrients control algal growth in Arctic streams3nitrogen, nutrients, phosphorus, nutrient limitation, law of the minimum, Arctic, limnologyresponse ratio, graph choice, standard deviation (SD)barcategoricalsummarized
To reflect, or not to reflect, that is the question3albedo, arctic, climate change, environmental, ice, temperature, waterequation, unnecessary variables, regressionline, scattercontinuoussummarized
How milkweed plants defend against monarch butterflies3herbivory, evolution, coevolution, plants, insects, ecology, scientist profilemean, regression, best fit line, trend line, multiple dependent variables, messiness, outlierline, scattercontinuoussummarized
Purring crickets: The evolution of a new cricket song3adaptation, animal behavior, animals, rapid evolution, mating, parasitism, scientist profilemean, percent, Chi-square testbarcategoricalraw, Digital Data Nugget
Round goby, skinny goby3local adaptation, animals, biodiversity, rapid evolution, fish, Great Lakes, habitat, invasive species, Kalamazoo Rivermean, standard error, replication, sample sizebarcategoricalsummarized, full dataset available
David vs. Goliath3aggression, animals, behavior, brain chemistry, competition, insects, physiology, biological significancefrequency, proportion, percent, unnecessary variablesbarcategoricalraw, summarized
Size matters - and so does how you carry it!3adaptation, animals, evolution, insects, sexual selection, tradeoffsresiduals, trend, multiple graphs, standardizescatter, linecontinuousraw, summarized, full dataset available
Ant wars!3aggression, animals, behavior, competition, insectsdensity, ratio, percent, regression, countbar, line, scattercontinuousraw, summarized
Salty sediments? What bacteria have to say about chloride pollution3bacteria, chemistry, disturbance, environmental, microbes, pollution, salt, urban, water, habitat, time, toxicitymean, concentrationbarcategoricalsummarized
Going underground to investigate carbon locked in soils 3climate change, ecology, environmental, greenhouse gasses, soil carbon, microbes, chemistrymean, standard deviation (SD), regression, best fit line, trend line, correlation vs. causationline, scattercontinuoussummarized
Nitrate: Good for plants, bad for drinking water3agriculture, environmental, fertilization, nitrogen, soil, water, plants, human health mean, time, date, Julian date, concentrationline, scattercontinuous, categoricalsummarized, full dataset available
Trees and the city3biodiversity, ecology, environmental justice, social demographics, urbanspatial data analysis, percent, binned data, average, median, histogrammultiple scatter, spatial mapcontinuousspatial, summarized, full dataset available
Collaborative cropping: Can plants help each other grow?3agriculture, environmental, plants, cropsreplicates, correlation vs. causation, regression, trendmultiple scattercontinuousraw
The sound of seagrass3acoustics, sound, photosynthesis, marine, productivity, decibels, physicsaverage, mean, standard deviation, trend, timemultiple scatter, linecontinuoussummarized
Which tundra plants will win the climate change race?3climate change, nutrients, long-term data, competition, plants, ecologymean, trend, time, series, control, long-term datalinecontinuoussummarized
The prairie burns with desire3ecology, prairie, plants, fire ecology, human impact, reproduction, land managementtrend, time, multiple plots, multiple variables, long-term data, proportion, averagescatter, linecontinuoussummarized, full dataset available
Seagrass survival in a super salty lagoon3climate change, ecology, environmental, long-term, marine, plants, salinitydouble y-axis, trend, time, multiple variablesscattercontinuoussummarized
Sink or source? How grazing geese impact the carbon cycle3carbon cycle, Arctic, wetlands, primary production, photosynthesis, respiration, climate change, birds, ecosystemequation, calculation, subtraction, negative values, source, sinkbarcategorical, continuoussummarized
Poop, poop, goose!3wetlands, Arctic, carbon cycle, climate change, disturbance, ecology, environmental, greenhouse gasses, birdsmean, standard deviation (SD), fluxbarcategoricalsummarized
Too hot to help? Friendship in a changing climate3mutualism, algae, coral, genotype, photosynthesis, respiration, climate changecalculations, negative values, net, mean, average, standard errorbarcategorical, continuoussummarized
A plant breeder’s quest to improve perennial grain4genetics, artificial selection, DNA, selective breeding, phenotype, genotype, nucleotides, sequencingcalculations, average, predictions, standard error, standard deviation, barcontinuous, categoricalsupplemental activity available,
Cheaters in nature – when is a mutualism not a mutualism?4evolution, legume, plants, mutualism, parasitism, rhizobia, nitrogen, fertilizationmean, standard error (SE)barcategoricalsummarized
Dangerous aquatic prey: can predators adapt to toxic algae?4adaptation, algae, evolution, marine, predationmeanbarcategoricalsummarized
Salmon in hot water4adaptation, animals, climate change, evolution, fish, genes, genome, temperature, DNA, heredity, genetics, QTLmeanlinecontinuoussummarized
Urbanization and estuary eutrophication4algae, eutrophication, fertilization, marine, nitrogen, phosphorus, wetland, urban, photosynthesis, respiration, limnologymean, standard error (SE), subtraction, modelbarcategoricalraw
How to escape a predator4adaptation, animal behavior, animals, predation, physiologymean, standard error (SE)barcategoricalraw, summarized
The flight of the stalk-eyed fly4physics, moment of intertia, adaptation, animals, flight, physiologymean, standard error (SE), formula, equation, multiplicationcontinuoussummarized
Make way for mummichogs4animals, biodiversity, disturbance, fish, restoration, wetland, limnologymeanbar, linecontinuousraw, summarized
The Arctic is melting – so what?4climate change, marine, temperature, water, weather, ice, Arctic, albedopercent, modelsdiagramcategorical, modeled datasummarized
Gene expression in stem cells4gene expression, genes, stem cells, DNA, genetics, human healthmeanbarcategoricalsummarized
Bon Appétit! Why do male crickets feed females during courtship?4adaptation, animals, behavior, competition, insects, mating, feeding, alternative hypotheses, scientist profilecount, proportion, regression, multiple regression, unnecessary variablesscattercontinuousraw
Winter is coming! Can you handle the freeze?4ecology, evolution, genes, plants, local adaptation, QTLpercent, standard deviation (SD), standard error (SE)bar, linecategoricalraw, summarized
Finding Mr. Right4animals, animal behavior, biodiversity, birds, evolution, genes, mating, local adaptationmeanbarcategoricalraw
Why so blue? The determinants of color pattern in killifish, Part I4adaptation, animals, biodiversity, evolution, fish, genes, mating, heredity, genetics, close reading activitymean, standard deviation (SD), standarad error (SE)barcategoricalraw, summarized
Why so blue? The determinants of color pattern in killifish, Part II4adaptation, animals, biodiversity, evolution, fish, genes, mating, heredity, geneticsmean, standard deviation (SD), standarad error (SE)barcategoricalraw, summarized
Sticky situations: big and small animals with sticky feet4adaptation, animals, biomimicry, chemistry, physics, scalemean, ratio, multiplication, formula, equation, surface area, mass, volumescatter - logarithmic axescontinuoussummarized
When whale I sea you again?4climate change, marine, temperature, water, whales, DNA, PCR, sex ratiofraction, percent, ratioline, stacked barcontinuous, categoricalraw, Digital Data Nugget
The case of the collapsing soil4climate change, carbon, ecology, plants, phosphorus, sea level rise, respiration, substrate, wetland, limnologyregression, concentrationscattercontinuousraw, Digital Data Nugget
Clique wars: social conflict in daffodil cichlids4animal behavior, animals, competition, fishcount, standard deviation (SD), standarad error (SE)barcategoricalsummarized
Fishy origins4community science, citizen science, DNA, evolution, fish, PCR, marine, microsatellitespercent, proportion, addition, divisionbar, stacked barcontinuous, categoricalraw
Fertilizer and fire change microbes in prairie soil4biodiversity, diversity, grassland, microbes, plants, prairie, soilunnecessary variables, Shannon Wiener Index, meanbarcontinuous, categoricalsummarized
Breathing in, Part I4photosynthesis, carbon accumulation, carbon sequestration, climate change, forest, habitatmean, confidence, global databasebarcontinuous, categoricalsummarized, full dataset available
Breathing in, Part 24climate change, photosynthesis, respiration, carbon, climate modelprecision, percent, model prediction, mean, calculation, equationbarcontinuous, categoricalsummarized, full dataset available
Stop that oxidation! What fruit flies teach us about human health4insects, model species, cell biology, genetics, cellular processes, oxidation, genetics, scientist profilemeanbarcontinuous, categoricalraw, summarized
Love that dirty water4environmental, urban, water, GIS, landscapes, impervious surfaces, ecosystem services, land acknowledgement, human healthmodel, web-tool, simulation, percent change, calculation, mapbar, line, mapcategorical, continuoussummarized
Trees and bushes, home sweet home for warblers4animals, biodiversity, disturbance, ecology, birds, succession, transect, habitatregression, best fit line, trend line, percentscattercontinuoussummarized
Changing climates in the Rocky Mountains4citizen science, climate change, community science, ecology, environmental, plants, precipitation, temperaturemean, trend, timeline, double y-axiscontinuous, categoricalsummarized, photo
Surviving the flood4disturbance, urban, stream, floods, photosynthesis, respiration, stormwaterreference line, percent, negative values, additional variables, difference, unnecessary variables, outlierscatter, linecontinuousraw, summarized
Eavesdropping on the ocean4acoustic ecology, physics, whales technology, mammals, marine biology, renewable energy, population, human impactproportions, calculation, detectionsscatter, barcategorical, continuoussummarized, full dataset available

Search Current Data Nuggets

Below, you will find a table of all the Data Nugget activities. Click on the Title to open a page displaying the teacher guide, student activities, grading rubric, and associated resources. The table can be sorted using the arrows located next to each column header. It can also be searched by content area using the search bar, located to the top right of the table.

Below the table, Data Nuggets are placed on a map to help you search for research conducted in your local area!

TitleKeywordsSummaryContent LevelStudy Location
DSC_0060Won’t you be my urchin?coral reef, herbivory, marine, sea urchin, water, animals, competitionCorals are the most important reef animals since they build the reef for all of the other animals to live in. But corals only like to live in certain places. In particular they hate living near algae because the algae and coral compete for the space they both need to grow. Perhaps if there are more vegetarians, like urchins, eating algae on the reef then corals would have less competition and more space to grow.1Flower Garden Banks National Marine Sanctuary, Texas
Do urchins flip out in hot water?animals, climate change, marine, heatwaves, urchins, behavior, invertebrates, environmental changePeriods of unusual warming in the ocean are called marine heatwaves. During marine heatwaves, water gets 2-3 degrees hotter than normal. That might not sound like much, but for an urchin, it is a lot. The research team decided to test whether marine heat waves could be stressing urchins by looking at a simple behavior that they could easily measure - how long it takes urchins to flip back over.1 & 3University of California - Santa Barbara
DSC_0060Coral bleaching and climate changeclimate change, coral reef, marine, mutualism, temperature, animals, algae, adaptation, evolutionCorals are animals that build coral reefs. They look brown and green because they have small plants, called algae, that live inside them. The coral animal and the algae work together to produce food so that corals can grow big. When the water gets too warm, sometimes the coral and algae can no longer work together. The algae leave and the corals turn white, called coral bleaching. Scientists want to study coral bleaching so they can protect corals and the reefs that provide a home for so many different species.1Florida Keys, Florida
Too hot to help? Friendship in a changing climatemutualism, algae, coral, genotype, photosynthesis, respiration, climate changeCoral and certain types of algae form a mutualism. However, climate change is causing warmer ocean temperatures that stress the relationship. Casey set out to test if different algae genotypes were capable of being better mutualists under warm temperatures. If he could identify these genotypes, then maybe that could help protect coral in the future.3California State University - Northridge
Corals in a strange placeadaptation, coral reef, mangrove, morphologyWhen you picture coral, you might imagine beautiful reef structures with clear water and colorful corals and fishes. But, there are actually corals that live in other habitats as well! Does the same species of coral look different depending on where it lives?2Belize
pcare2Raising Nemo: Parental care in the clown anemonefishanimals, behavior, coral reef, ecology, fish, marine, mating, tradeoff, plasticityOffspring in many animal species rely on parental care; the more time and energy parents invest in their young, the more likely it is that their offspring will survive. However, parental care is costly for the parents. The more time spent on care, the less time they have to find food or care for themselves. In the clown anemonefish, the amount of food available may impact parental care behaviors. When there is food freely available in the environment, are parents able to spend more time caring for their young?3Boston University, Massachusetts
Buried seeds, buried treasuregermination, long-term, plants, seed bank, seed viability, agricultureOver 100 years ago, a scientist named William J. Beal had a question: how long do seeds survive underground? He started an experiment by filling 20 bottles with seeds from 50 plant species, buried them on campus, and creating a map to find them in the future. This map have been passed down from scientist generation to generation. The most recent bottle was dug up in 2021, and scientists tested how many seeds were still able to germinate after 142 years underground.2Michigan State University
Getting to the roots of serpentine soilsoil, plasticity, limiting factors, plants, ecologyWhen an organism grows in different environments, some traits change to fit the conditions. Serpentine soils have high amounts of toxic heavy metals, do not hold water well, and have low nutrient levels. Low levels of water and nutrients found in serpentine soils limit plant growth. Because serpentine soils have fewer plant nutrients and are drier than non-serpentine soils, Alexandria thought that plants growing in serpentine soils may not invest as much into large root systems.2University of Miami, Florida
The prairie burns with desireecology, prairie, plants, fire ecology, human impact, reproduction, land managementFire plays a crucial role for prairie habitats across North America. Stuart became interested in learning more about how fire affects the reproduction of native prairie plants. He knew that Echinacea plants grow in many places, but they have a hard time making seeds. He looked at a long-term dataset to see whether fire might help Echinacea by getting plants on the same schedule to make flowers at the same time, bringing neighbors closer to each other and making it easier to be pollinated.3Staffanson Prairie Preserve, Minnesota
A burning questionbiodiversity, canopy, ecology, fire ecology, forest, human impact, keystone species, land management, natural resourcesFire is part of the natural history of oak forests. They are adapted to recover quickly and they actually can benefit from fire. This is important for land managers who want to encourage the health of oak forests. Ellen and John wanted to know if there were more plant species in oak forests that had prescribed fires so they looked at a long-term dataset to find patterns in biodiversity.2Madison School Forest, Wisconsin
These are two different experimental plots within the large field experiment at Konza Prairie Biological Station. The one with lots of trees is an unburned plot, the one with lots of grass is a burned plot.Fertilizer and fire change microbes in prairie soilbiodiversity, diversity, grassland, microbes, plants, prairie, soil, agriculture, fire ecologyPrairies grow where three environmental conditions come together – a variable climate, frequent fires, and large herbivores roaming the landscape. However, prairies are experiencing many changes. For example, people now work to prevent fires, which allows forest species take over. In addition, land previously covered in prairie is now being used for agriculture. How do these changes affect the plants, animals, and microbial communities that inhabit prairies?4Konza Prairie Biological Station, Kansas
A bison mom and her calf.Does more rain make healthy bison babies?animals, ecology, keystone species, plants, prairie, precipitation, agricultureThe North American Bison is an important species for the prairie ecosystem. Bison affect the health of the prairie in many ways, and are also affected by the prairie as well. Each year when calves are born, scientists go out and determine their health by weighing them. This long-term dataset can be used to figure out whether environmental conditions from the previous year affect the health of the calves born in the current year.2Konza Prairie Biological Station, Kansas
City parks: wildlife islands in a sea of cementanimals, biodiversity, ecology, urban, island biogeography, parksIt's tempting to think that wild places are only somewhere "out there", far away from humans and cities. However, as more and more people move into cities, they are quickly becoming the main place where many people experience nature and interact with wildlife. A camera-trapping project in the Cleveland Metroparks reveals a vast urban wilderness that is home to countless wild creatures living among us.3Cleveland Metroparks, Ohio
Candid camera: capturing the secret lives of carnivoresanimals, biodiversity, carnivores, ecology, island biogeographyCarnivores captivate people’s interest for many reasons – they are charismatic, stealthy, and can be dangerous. Not only are they fascinating, they’re also ecologically important. Carnivores help keep prey populations in balance. While they are important, they are also difficult to monitor.3Apostle Islands National Lakeshore, Wisconsin
Picky eaters: dissecting poo to examine moose dietsanimal behavior, animals, ecology, foraging, herbivory, national park, predator-preySince wolves have disappeared from Isle Royale, moose populations have exploded. Moose are important herbivores, and with so many on the island they are having strong impacts on the island's plant communities. Do moose just eat any plant they find, or do they have a preference for certain types?3Isle Royale National Park, Michigan
Guppies on the moveanimals, aquatics, behavior, ecology, genetics, migration, movement, tropicsAnimal parents often choose where to have their offspring in the place that will give them the best chance at success. They look for places that have plentiful food, low risk of predation, and good climate. Why, then do animals sometimes move away from the place they are born?2Kellogg Biological Station, Michigan
Deadly windowsanimals, behavior, birds, environmental, urbanGlass makes for a great windowpane because you can see right through it. However, this makes windows very dangerous for birds. Many birds die from window collisions in urban areas. In North America window collisions kill up to 1 billion birds every year! Perhaps local urban birds are able to learn the locations of windows and avoid collisions. By comparing window collisions by local birds to those of migrant birds just passing through, we can determine if local birds have learned to deal with this challenge.2Virginia Zoological Park, Virginia
Bringing back the Trumpeter Swananimals, biodiversity, birds, ecology, environmental, restorationTrumpeter swans are the biggest native waterfowl species in North America. At one time they were found across North America, but by 1935 there were only 69 known individuals in the continental U.S.! In the 1980s, many biologists came together to create a Trumpeter Swan reintroduction plan. Since then the North American Trumpeter Swan survey has been conducted to measure swan populations and determine whether this species is recovering.3Kellogg Bird Sanctuary, Michigan
DSC_0060The birds of Hubbard Brook, Part Ianimals, biodiversity, birds, climate change, succession, disturbance, ecologyAvian ecologists at the Hubbard Brook Experimental Forest have been monitoring bird populations for over 50 years. The data collected during this time is one of the longest bird studies ever conducted! What can we learn from this long-term data set? Are bird populations remaining stable over time?2Hubbard Brook Experimental Forest, New Hampshire
DSC_0060The birds of Hubbard Brook, Part IIanimals, biodiversity, birds, climate change, succession, disturbance, ecology, habitatHubbard Brook was heavily logged and disturbed in the early 1900s. When logging ended in 1915, trees began to grow back. The forest then went through secondary succession, which refers to the naturally occurring changes in forest structure that happen as a forest ages after it has been cut or otherwise disturbed. Can these changes in habitat availability, due to succession, explain why the number of birds are declining at Hubbard Brook? Are all bird species responding succession in the same way?3Hubbard Brook Experimental Forest, New Hampshire
Trees and bushes, home sweet home for warblersanimals, biodiversity, birds, disturbance, ecology, environmental, habitatAndrews Forest is a long-term ecological research site where there have been manipulations of timber harvest and forest re-growth. This history has large impacts on the bird habitats found in an area. Each year since 2009, scientists have gone out and measured bird populations and habitat types. Two species of warbler with very different habitat preferences can give insight into how birds are responding to these disturbances.4HJ Andrews Experimental Forest, Oregon
DSC_0060Is chocolate for the birds?agriculture, animals, birds, biodiversity, ecology, rainforest, succession, habitatHumans invented agriculture 9,000 years ago, and today it covers 40% of Earth’s land surface. To grow our crops, native plants are often removed, causing the loss of animals that relied on these native plants for habitat. However, sometimes animals can use crop species for food and shelter. For example, the cacao tree may provide habitat for bird species in the rainforests of Costa Rica. Will the abundance and types of birds differ in cacao plantations, compared to native rainforests?2Limón Province, Costa Rica
 junglefoulFeral chickens fly the coopadaptation, animals, behavior, birds, ecology, evolution, invasive species, mating, heredity, geneticsSometimes domesticated animals escape captivity and interbreed with closely related wild relatives. Their hybrid offspring have some traits from the wild parent, and some from the domestic parent. Traits that help hybrids survive and reproduce will be favored by natural selection. On the island of Kauai, domestic chickens escaped and recently interbred with wild Red Junglefowl to produce a hybrid population. Over time, will the hybrids on Kauai evolve to be more like chickens, or more like Red Junglefowl?3Kauai, Hawaii
DSC_0060Sexy smellsadaptation, animal behavior, animals, birds, mating, evolution, sexual selectionAnimals collect information about each other and the rest of the world using multiple senses, including sight, sound, and smell. They use this information to decide what to eat, where to live, and who to pick as a mate. Many male birds have brightly colored feathers and ornaments that are attractive to females. Visual signals like these ornaments have been studied a lot in birds, but birds may be able to determine the quality of a potential mate using other senses as well, such as their smell!2Mountain Lake Biological Station, Virginia
chickadee2Finding Mr. Rightadaptation, animals, behavior, biodiversity, birds, evolution, genes, mating, local adaptationMountain chickadees are small birds that live in the mountains. To deal with living in a harsh environment during the winter, mountain chickadees store large amounts of food throughout the forest. Compared to populations at lower elevations, birds from higher elevations are smarter and have better spatial memory, helping them better find stored food. Smarter females from high elevations may be contributing to local adaptation by preferring to breed with males from their own population.4University of Nevada Reno & Sagehen Experimental Forest
Spiders under the influenceanimals, invertebrates, habitat, chemical pollution, aquatic, streamsPeople use pharmaceutical drugs, personal care products, and other chemicals on a daily basis. Often, they get washed down our drains and end up in local waterways. Chris knew that many types of spiders live near streams and are exposed to toxins through the prey they eat. Chris wanted to compare effects of the chemicals on spiders in rural and urban environments. By comparing spider webs in these two habitats, they could see how different the webs are and infer how many chemicals are in the waterways. 2Baltimore Ecosystem Study LTER
Trees and the citybiodiversity, ecology, environmental justice, social demographics, urbanTrees provide important benefits, such as beauty and shade. The number and types of tree species that are planted in a neighborhood can increase the benefits received from trees in urban areas. Based on her own observations, Adrienne started conversations with her colleagues about differences in urban landscapes. They conducted a study to see how social demographics of neighborhoods may be related to tree species richness and tree cover. 3Minneapolis and St. Paul, Minnesota
Salty sediments? What bacteria have to say about chloride pollutionbacteria, chemistry, disturbance, environmental, microbes, pollution, salt, urban, waterIn snowy climates, salt is applied to roads to help keep them safe during the winter. When the snow melts, salt makes its way into local rivers. Halophiles, or bacteria that thrive in salty conditions, might be a good indicator of how much salt is in a particular waterway, telling scientists when certain areas have become too polluted with salt. 3Southeastern Wisconsin
DSC_0060A tail of two scorpionsanimal behavior, animals, predationSpecies rely on a variety of methods to defend against predators, including camouflage, speedy escape, or retreating to the safety of a shelter. Other animals, such as scorpions, have painful venomous stings. Scientists wanted to know whether the pain of a scorpion sting was enough to deter predators, like the grasshopper mouse.2Santa Rita Mountains, Arizona
Why are butterfly wings colorful?adaptation, animals, insects, models, predationBig wings allow butterflies to fly everywhere with ease. But you may wonder, why are the wings of some species so brightly colored? The red postman butterfly lives in rainforests in Mexico, Central America, and South America. The color pattern on its wing is usually a mix of red, yellow, and black. These bright colors may warn birds and other predators that they would not make a tasty meal. Another potential reason for butterflies to have bright colors and dramatic patterns is to attract mates.3La Selva Tropical Biological Station, Sarapiquí, Costa Rica
To bee or not to bee aggressiveanimals, behavior, genes, insects, tradeoff, plasticity, aggressionHoney bees turn nectar from flowers into honey, and honey serves as an energy-rich food source for the colony. Honey also makes hives a target for break ins by animals that want to steal it. Bees need to aggressively defend their honey when the hive is threatened. They also need to ensure that they do not waste energy on unnecessary aggressive behaviors when the threat level is low. One way bees might match their aggressiveness to the threat level in the environment is learning from adults when they are young.3University of Kentucky, Kentucky
Ant wars!aggression, animals, behavior, competition, insectsNeighboring colonies of pavement ants often compete for food, leading to tension. If an ant finds a non-nestmate, it organizes a large war against the nearby colony. This results in huge sidewalk battles that can include thousands of ants fighting for up to 12 hours! Scientists wanted to know, what are the factors that lead to war?3University of Colorado-Denver and University of South Dakota
DSC_0060CSI: Crime Solving Insectsanimals, insects, parasitismYou might think maggots (blow fly larvae) are gross, but without their help in decomposition we would all trip over dead bodies every time we went outside! Forensic entomologists also use these amazing insects to help solve crimes. Blow flies oviposit on dead bodies; the age of the maggots helps scientists determine how long ago a body died. Scientists noticed parasitic wasps were also present at some bodies. Might these wasps delay blow fly oviposition and interfere with scientists' estimates of time of death?3Pierce Cedar Creek Institute, Michigan & Valparaiso University, Indiana
DSC_0060Shooting the poopadaptation, animal behavior, animals, insects, predationCaterpillars are a great source of food for many species. The silver-spotted skipper caterpillar has a variety of defense strategies against predators, including building leaf shelters for protection. This caterpillar was also discovered to “shoot its poop”, sometimes launching it over 1.5m! Might this very strange behavior serve as some sort of defense against predators?2Georgetown University, Washington DC
DSC_0060How the cricket lost its song, Part Iadaptation, animal behavior, animals, evolution, mating, parasitism, rapid evolutionPacific field crickets live on several Hawaiian Islands, including Kauai. Male field crickets make a loud, long-distance song to help females find them, and then switch to a quiet courtship song once a female comes in close. One summer scientists noticed that the crickets on the island were unusually quiet. Back in the lab they saw males that had lost their specialized wing structures used to produce song! Why did these males lose their wing structures?3Kauai Agricultural Research Center - Kapaa, Hawaii
DSC_0060How the cricket lost its song, Part IIadaptation, animal behavior, animals, evolution, mating, parasitism, rapid evolutionWithout their song, how are flatwing crickets able to attract females? In some other animals species, males use an alternative to singing, called satellite behavior. Satellite males hang out near a singing male and attempt to mate with females who have been attracted by the song. Perhaps the satellite behavior gives flatwing males the opportunity to mate with females who were attracted to the few singing males left on Kauai. 3Kauai Agricultural Research Center - Kapaa, Hawaii
Purring crickets: The evolution of a new cricket songadaptation, animal behavior, animals, evolution, mating, parasitism, rapid evolutionAbout twenty years ago, scientists discovered male Pacific field crickets in several spots in Hawaii had stopped making songs due to selection from a parasitoid fly that uses the songs to locate their hosts. One summer, scientists heard what sounded like a purring cat, but there was no cat in sight. This sound was coming from crickets, and was unlike anything ever observed before. Could it be the beginning of evolution of a novel mating signal?3Kauai Agricultural Research Center - Kapaa, Hawaii
dungbeetleBeetle battlesadaptation, animals, behavior, competition, evolution, insects, matingMale animals spend a lot of time and energy trying to attract females. They may fight with other males or court females directly. Is there one trait that is both good for fighting males and attracting females? In the horned dung beetle, males have to fight with other males for space in underground tunnels where females mate and lay their eggs. Males also attract females by tapping on their backs. Males that are stronger may potentially be better at both defending tunnels and at attracting females by tapping.2Perth, Australia
Tree-killing beetlesanimals, biodiversity, disturbance, ecology, environmental, insects, plantsA beetle the size of a grain of rice seems insignificant compared to a vast forest. However, during outbreaks the number of mountain pine beetles can skyrocket, leading to the death of many trees. Recent outbreaks of mountain pine beetles killed millions of acres of lodgepole pine trees across western North America. Widespread tree death caused by mountain pine beetles can impact human safety, wildfires, nearby streamflow, and habitat for wildlife.2Colorado State University, Colorado
A monarch caterpillar on a milkweed leaf.Mowing for monarchs, Part Ianimals, behavior, biodiversity, disturbance, ecology, plants, insectsDuring the spring and summer months, monarch butterflies lay their eggs on milkweed plants. Milkweed plays an important role in the monarch butterfly’s life cycle. When milkweed is cut at certain times of the year new shoots grow, which are softer and easier for caterpillars to eat. Scientists set out to see if mowing milkweed plants could help boost struggling monarch populations.2Kellogg Biological Station, Michigan
Mowing for monarchs, Part IIanimals, behavior, biodiversity, disturbance, ecology, plants, insects, predationWhen the scientists mowed down milkweed plants for their experiment, they changed more than the age of the milkweed plants. They also removed other plant species in the background community. Perhaps the patterns they were seeing were driven not by milkweed age, but by eliminating predators from the patches they mowed.2Kellogg Biological Station, Michigan
How milkweed plants defend against monarch butterfliesherbivory, evolution, coevolution, plants, insects, ecologyFor millions of years, monarch butterflies have been antagonizing milkweed plants. Although adult monarchs drink nectar from flowers, their caterpillars only eat milkweed leaves, which harms the plants. The only food for monarchs is milkweed leaves, meaning they have evolved to be highly specialized, picky eaters. But their food is not a passive victim. Like most other plants, milkweeds fight back with defenses against herbivory. Which defensive traits are helping in the fight against herbivory?3Cornell University
Where to find the hungry, hungry herbivoresherbivory, plants, insects, ecologyWhen travelling to warm, tropical places you are exposed to greater risk of diseases. The same pattern of risk is true for other species like plants grown for food; crops in warm places have more problems with pests than those in colder areas. Does this pattern hold for plants in the wild as well?2Michigan State University
Are plants more toxic in the tropics?herbivory, diversity, plants, insects, ecology, adaptationLong before chemists learned how to make medicines in the laboratory, people found their medicines in plants. To this day, people still extract some medicinal drugs from plants. But, why do plants make these chemicals that are often so useful to people? Many of these chemicals are to reduce herbivory. Carina thought that this might differ by latitude, or distance from the Equator. Are tropical plants more toxic?
3Michigan State University
DSC_0060Do insects prefer local or foreign foods?herbivory, invasive species, plants, insects, enemy release, ecologyInsects that feed on plants, called herbivores, can have big effects on how plants grow. A plant with leaves eaten by herbivores will likely do worse than a plant that is not eaten. Herbivores may even determine how well an exotic plant does in its new habitat and whether it becomes invasive. Understanding what makes a species become invasive could help control invasions already underway, and prevent new ones in the future.2Kellogg Biological Station, Michigan
DSC_0060Do invasive species escape their enemies?herbivory, invasive species, plants, insects, enemy release, ecologyInvasive species have been introduced by humans to a new area and negatively impact places they invade. Many things change for an invasive species when it is moved from one area to another. For example, a plant that is moved across oceans may not bring its enemies along for the ride. Now that the plant is in a new area with nothing to eat or infect it, the plant could potentially do very well and become invasive.2Kellogg Biological Station, Michigan
Testing the tolerance of invasive plantsecology, herbivory, invasive species, plants, tolerancePeople move species around the globe, and some of these species cause problems where they are introduced. What is it about these invasive species that makes them able to invade? Perhaps certain traits cause invasive species to be more troublesome than others. By studying trait differences between native and invasive populations of the same species, we can learn something about the causes of invasions.3McLaughlin Natural Reserve, California
DSC_0060Invasion meltdownclimate change, ecology, invasive species, plants, temperatureHumans are changing the earth in many ways, including adding greenhouse gasses to the atmosphere, which contributes to climate change, and introducing species around the globe, which can lead to invasive species. Scientists wanted to know, could climate change actually help invasive species? Because invasive species have already survived transport from one habitat to another, they may be species that are better able to handle change, such as temperature changes.3Kellogg Biological Station, Michigan
DSC_0060Springing forwardclimate change, phenology, plants, temperatureWhat does climate change mean for flowering plants that rely on temperature cues to determine when it is time to flower? Scientists who study phenology, or the timing if life-history events in plants and animals, predict that with warming temperatures, plants will produce their flowers earlier and earlier each year.1 & 3Kellogg Biological Station, Michigan
The sound of seagrassacoustics, sound, photosynthesis, marine, productivity, decibels, physicsUnderwater seagrass meadows have high plant productivity, or growth, which could help offset the effects of climate change. Megan and Kevin are working with biologists to determine the value of applying sound-based methods to monitor photosynthesis in seagrass meadows. They wanted to see whether ambient sound levels were noticeably different during peak photosynthesis times. 3Gulf of Mexico, Texas
Seagrass survival in a super salty lagoonclimate change, ecology, environmental, long-term, marine, plants, salinityUnfortunately, seagrasses are disappearing worldwide. Seagrasses are sensitive to changes in their environment because they have particular conditions that they prefer. Kyle started working with Ken during graduate school and wanted to understand more about what environmental conditions, such as salinity, temperature, and light levels may have caused the decline they saw in manatee grass in Laguna Madre.3Laguna Madre, Gulf of Mexico, Texas
Lake Superior Rhythmsamplitude, aquatic, atmosphere, environmental, physics, student research, wave period, wavesIn high school, Gena and Ali set out to learn about the geophysical forces acting on Lake Superior. They wanted to investigate why they would sometimes see such dramatic fluctuations in Lake Superior water levels. They learned that large lakes exhibit a phenomenon called a seiche (pronounced saysh) and they decided to investigate how often the water switched directions and how much the water level changed because of the seiche.2Bayfield, Wisconsin
The end of winter as we’ve known it?climate change, ice coverLake Superior plays a vital role in the lives of people who live and work on its shores, and therefore all sorts of data are recorded to help understand and take care of it. Forrest, a high school student, used data from archives to figure out if the ice season was getting shorter each winter in his home town. The length of the ice season is important because it frees the island residents from working around a ferry schedule, allowing them to drive on the ice to get to the mainland.3Madeline Island, Wisconsin
kgrayson1When a species can’t stand the heatanimals, climate change, disturbance, ecology, environmental, mating, temperatureTuatara are a unique species of reptile found only in New Zealand. In this species, the temperature of the nest during egg development determines the sex of offspring. Warm nests lead to more males, and cool nests lead to more females. With warming temperatures due to climate change, scientists expect the sex ratio to become more and more unbalanced over time, with males making up more of the population. This could leave tuatara populations with too few females to sustain their numbers.3North Brother Island, New Zealand
DSC_0060What do trees know about rain?climate change, dendrochronology, ecology, plants, precipitation, temperature, waterThe typical climate of arid northwest Australia consists of long drought periods with a few very wet years sprinkled in. Scientists predict that climate change will cause these cycles to become more extreme – droughts will become longer and periods of rain will become wetter. When variability is the norm, how can scientists tell if the climate is changing and droughts and rain events today are more intense than what we've seen in the past? The answer to this challenge comes from trees! 3Pilbara region, northwest Australia
Changing climates in the Rocky Mountainscitizen science, climate change, community science, ecology, environmental, plantsAs the climate warms and precipitation changes, plants may have to move to survive. To figure out if species are moving, we need to know where they’ve lived in the past, and if climates are changing. One way that we can study both things is to use the Global Vegetation Project. The goal of this project is to curate a global database of plant photos that can be used by educators and students around the world. 4Rocky Mountains, Wyoming
A window into a tree’s worldclimate change, dendrochronology, ecology, plants, temperatureScientists are very interested in learning how trees respond to rapidly warming temperatures. Luckily, trees offer us a window into their lives through their growth rings. Growth rings are found within the trunk, beneath the bark. These rings provide a long historical record, which can be used to study how trees respond to climate change.2Harvard Forest LTER, Massachusetts
Breathing in, Part Iclimate change, photosynthesis, respiration, carbonPhotosynthesis is the process by which trees and other plants trap the sun’s energy within the molecular bonds of glucose. Tree growth pulls carbon out of the atmosphere and trees hold on to it for long periods of time. This process is known as carbon sequestration or carbon accumulation. Kristina and Susan decided they needed to work together to learn more about how carbon accumulation rates and how they differ across various types of forests found around the world.4Global
Breathing in, Part IIclimate change, photosynthesis, respiration, carbon, climate model, precisionLike many other scientists, Susan and Kristina are concerned about global warming. Global warming is the well-documented rise of the temperature of Earth’s surface, oceans, and atmosphere. They wanted to make sure that those creating climate change policy have the most precise data available. They compared their ForC model, which predicts carbon accumulation based on forest regrowth across the glove, to a similar model the IPCC was using.4Global
Beetle, it’s cold outside!animals, climate change, ectotherm, insects, temperature, snowMany species rely on the snow for protection from the winter’s cold. The snow acts as an insulating blanket, covering the soil and keeping it from getting too cold. If temperatures get too hot in the winter, snow melts and leaves the soil uncovered for longer periods of time. This leads to the shocking pattern that warmer temperatures actually means the soil gets colder! How will species that rely on the snow, like lady beetles, respond to warmer temperatures due to climate change?2University of California, Berkeley
Benthic buddiesadaptation, animals, arctic, biodiversity, ecology, environmental, invertebrates, lagoons, marineArctic lagoons support a surprisingly wide range of marine organisms! Marine worms, snails, and clams live in the muddy sediment of these lagoons. Having a rich variety of benthic animals in these habitats supports fish, which migrate along the shoreline and eat these animals once the ice has left. Ken, Danny, and Kaylie are interested in learning more about how the extreme seasons of the High Arctic affect the marine life that lives there. 2Beaufort Lagoon LTER site, Alaska
To reflect, or not to reflect, that is the questionalbedo, Arctic, climate change, environmental, ice, temperature, waterLong-term observations of sea ice extent at the North Pole show it is declining, and fast! Why is this important? Sea ice has a higher albedo than sea water, meaning it reflects back more of the sun's energy. If Arctic albedo decreases, this might create a feedback and lead to even more warming.3University of Colorado, Boulder
DSC_0060The Arctic is melting – so what?climate change, marine, models, temperature, water, weather, snow, albedo, ArcticThink of the North Pole as one big ice cube – a vast sheet of ice, only a few meters thick, floating over the Arctic Ocean. With global warming, more sea ice is melting than ever before. If more ice melts in the summer than is formed in the winter, the Arctic Ocean will become ice-free. Scientists ran a climate model to determine whether this loss of sea ice could affect extreme weather in the northern hemisphere.4Arctic Ocean, North Pole
Eavesdropping on the oceanacoustic ecology, physics, whales technology, mammals, marine biology, renewable energy, population, human impactWinds that blow over the ocean are more consistent than on land, making offshore wind energy a potentially reliable renewable energy source. The construction of offshore windmills could impact whales. Scientists want to see whether it is possible to identify the best time of year for construction with the least disturbance to marine mammals. Acoustic ecology is a way to learn more about whales their presence in the proposed wind energy areas through sound.4Offshore by Morro Bay, California
When whale I sea you again?climate change, marine, temperature, water, whalesPeople have hunted whales for over 5,000 years for their meat, oil, and blubber. Today, as populations are struggling to recover from whaling, humpback whales are faced with additional challenges due to climate change. Their main food source is krill, which are small crustaceans that live under sea ice. As sea ice disappears, the number of krill is getting lower and lower. Humpback whale population recovery may be limited because their main food source is threatened by ongoing ocean warming.4Western Antarctic Peninsula, Palmer Station LTER
Can biochar improve crop yields?agriculture, environmental, fertilization, plants, soil, waterBiochar is a pretty unique material. It is created when things burn without oxygen. Most biochar has lots of tiny spaces, or pores, that cause it to act like a hard sponge when it is in the soil. Due to these pores, the biochar can hold more water and nutrients than the soil can by itself. Adding biochar to the soil may help farmers grow more crops, especially in areas prone to drought where water is limited.3Colorado State University Agricultural Research and Development Center
A plant breeder’s quest to improve perennial grainagriculture, genetics, artificial selection, DNA, phenotype, genotype, nucleotides, sequencing, Kernza®Kernza® is a new grain crop that is similar to wheat. Kernza® breeders are working on improving the same traits that have already been improved in annual wheat, including larger seed size. Hannah wanted to see whether different genetic makeups (genotypes) lead to differences in seed size (phenotypes) so selecting individuals to breed becomes easier and costs are reduced.4University of Minnesota
Nitrate: Good for plants, bad for drinking wateragriculture, environmental, fertilization, nitrogen, soil, water, plants, human health, crops, Kernza®Nitrate dissolves well in water. This helps make it an easy form of nitrogen for plants to use, but it can also end up in rivers and groundwater where it becomes harmful to human health. Most of the crops we grow are annual plants with shallow roots, but perhaps planting perennial crops can help take more nitrate from the soil before it reaches our groundwater.3University of Minnesota
Collaborative cropping: Can plants help each other grow?agriculture, environmental, plants, crops, Kernza®Most of the crops grown on farms in the United States are annual plants, like corn, soybeans, and wheat. However, there may be potential benefits of perennial plants that could increase sustainability. One strategy to improve field conditions for perennial crops and to increase yield could be to plant legumes alongside them.3University of Minnesota
A difficult droughtfermentation, ethanol, agriculture, biofuels, climate change, plants, carbonBiofuels are made from plants that are growing today, and are being considered as an alternative to fossil fuels. To become biofuels, plants need to go through a series of chemical and physical processes that transform the sugars into ethanol. Scientists are interested in seeing how yeast’s ability to transform sugar into fuel is affected by environmental conditions in fields, such as droughts.2University Wisconsin-Madison, GLBRC, Kellogg Biological Station &
DSC_0060Growing energy: comparing biofuel crop biomassagriculture, biofuels, climate change, fertilization, plantsCorn is one of the best crops for producing biomass for fossil fuels, however it is an annual and needs very fertile soil. To grow corn, farmers add a lot of chemical fertilizers and pesticides to their fields. Other crops, like switchgrass, prairie, poplar trees, and Miscanthus grass are perennials and require fewer fertilizers and pesticides to grow. If perennials can produce high levels of biomass with low inputs, perhaps they could produce more biomass than corn under certain low nutrient conditions.3GLBRC, Kellogg Biological Station & University Wisconsin-Madison
DSC_0060Fertilizing biofuels may cause release of greenhouse gassesagriculture, biofuels, climate change, fertilization, greenhouse gasses, nitrogen, plantsOne way to reduce the amount of greenhouse gases we release into the atmosphere could be to grow our fuel instead of drilling for it. Unlike fossil fuels that can only release CO2, biofuels remove CO2 from the atmosphere as they grow and photosynthesize, potentially balancing the CO2 released when they are burned for fuel. However, the plants we grow for biofuels don’t necessarily absorb all greenhouse gas that is released during the process of growing them on farms and converting them into fuels.3GLBRC, Kellogg Biological Station, Michigan
DSC_0060The ground has gas!agriculture, climate change, temperature, greenhouse gasses, nitrogen, plantsNitrous oxide and carbon dioxide are responsible for much of the warming of the global average temperature that is causing climate change. Sometimes soils give off, or emit, these greenhouse gases into the earth’s atmosphere, adding to climate change. Currently scientists figuring out what causes differences in how much of each type of greenhouse gas soils emit.3GLBRC, Kellogg Biological Station, Michigan
Are forests helping in the fight against climate change?climate change, ecology, environmental, greenhouse gasses, photosynthesis, plantsIn the 1990s, scientists began to wonder what role forests were having in the exchange of carbon in and out of the atmosphere. Were forests overall storing carbon (carbon sink), or releasing it (carbon source)? To test this, they built large metal towers that stand taller than the forest trees around them and use sensors to measure the speed, direction, and CO2 concentration of each puff of air that passes by. These long term measurements can tell us whether forests help in the fight against climate change.3Harvard Forest LTER, Massachusetts
Sink or source? How grazing geese impact the carbon cyclecarbon cycle, Arctic, wetlands, primary production, photosynthesis, respiration, climate change, birds, ecologyWhen geese graze on wetland plants, they remove plant matter, potentially decreasing the amount of carbon dioxide, or CO2, that is released during photosynthesis. This is important because it could change whether this ecosystem is a carbon sink or a carbon source. We want ecosystems to be carbon sinks because then they keep CO2 out of the atmosphere, where it contributes to global warming.3Yukon-Kuskokwim Delta, Alaska
Cackling Goose next to a pile of goose poop, or fecesPoop, poop, goose!wetlands, Arctic, carbon cycle, climate change, disturbance, ecology, environmental, greenhouse gasses, birdsEach spring, millions of birds return to the Y-K Delta to breed. With all these geese coming together in one area, they create quite a mess – they drop tons of poop onto the soil. So much poop in fact, that scientists wonder whether poop from this area in Alaska could have a global impact! 3Yukon-Kuskokwim Delta, Alaska
Going underground to investigate carbon locked in soilsclimate change, ecology, environmental, greenhouse gasses, soil carbon, microbes, chemistry, agricultureSoil is an important part of the carbon cycle because it traps carbon, keeping it out of the atmosphere and locked underground. Carbon enters the soil when plants and animals die, and their organic matter is decomposed by soil bacteria and fungi. Climate affects rates of decomposition, and therefore may affect how much carbon becomes stable and attached to minerals in the soil, feeding back to affect climate change. 3Indiana University
The carbon stored in mangrove soilscarbon, climate change, disturbance, ecology, nutrients, greenhouse gasses, mangrove, plantsMangroves are globally important for many reasons. They form dense forested wetlands that protect the coast from erosion and provide critical habitat for many animals. Mangrove forests also help in the fight against climate change by storing carbon in their soils. The balance between how much carbon is added to the soils and how much is released might be dependent on a variety of factors, including tree size and amount of disturbance to the site.2Biscayne National Park, Florida Everglades
mangrove in marshMangroves on the moveclimate change, ecology, environmental, fertilization, nitrogen, nutrients, phosphorus, plants, mangroveOne day out in the saltmarsh, scientists noticed something strange. A mangrove shrub was growing in a place they had not been seen before! Are the fertilizers washing into the saltmarsh from nearby urban areas responsible for this shocking discovery?2Guana-Tolomato-Matanzas National Estuarine Research Reserve, Florida
Which tundra plants will win the climate change race?climate change, nutrients, long-term data, competition, plants, ecologyWhile you might think of the arctic tundra as a blanket of snow and polar bears, this vast landscape supports a diversity of unique plant and animal species. Climate change is altering the arctic environment. With warmer seasons and fewer days with snow covering the ground, soils are thawing more deeply and becoming more nutrient-rich. With more nutrients available, will some plant species be able to outcompete other species by growing taller and making more leaves than other plant species?3Toolik Field Station, Alaska
Streams as sensors: Arctic watersheds as indicators of changeclimate change, ecology, environmental, carbon, nitrogen, permafrostAs the world warms from climate change, the Alaskan Arctic is heating up. This is causing permafrost, or the frozen underground layer of rock and ice, to melt. When permafrost melts, plant material that has been stored for thousands of years begins to decay, releasing carbon and nitrogen from the system. Ecologists can act like “ecosystem accountants” measuring the balance of material that goes into and out of these systems.3Toolik Field Station, Alaska
Limit by limit: Nutrients control algal growth in Arctic streamsclimate change, ecology, environmental, nitrogen, nutrients, phosphorusAquatic algae, a type of microbe that live in the water, need to take in nutrients from their surroundings for growth. Two important nutrients for algal growth are nitrogen (N) and phosphorous (P). Climate change may be altering which nutrients are limiting to algae, changing food webs in the ecosystem.3Toolik Field Station, Alaska
DSC_0060Cheaters in nature – when is a mutualism not a mutualism?evolution, legume, plants, mutualism, parasitism, rhizobia, nitrogen, fertilization, agricultureMutualisms are a special type of relationship in nature where two species work together and both benefit. This cooperation should lead to each partner species doing better when the other is around – without their mutualist partner, the species will have a harder time acquiring resources. But what happens when one partner cheats and takes more than it gives?4Kellogg Biological Station, Michigan
DSC_0060Fair traders or freeloaders?evolution, legume, plants, mutualism, rhizobia, nitrogen, fertilization, agricultureOne example of a mutualism is the relationship between a type of bacteria, rhizobia, and plants like peas, beans, soybeans, and clover. Rhizobia live in bumps on the plant roots, where they trade their nitrogen for sugar from the plants. Rhizobia turn nitrogen from the air into a form that plants can use. Under some conditions, this mutualism could break down, for example, if one of the traded resources is very abundant in the environment.3Kellogg Biological Station, Michigan
DSC_0060Does a partner in crime make it easier to invade?legume, plants, mutualism, rhizobia, invasive species, soilInvasive plants are species that have been transported by humans from one location to another, and grow and spread quickly compared to other plants. Mutualisms can affect what happens when a plant species is moved somewhere it hasn’t been before. For invasive legumes with rhizobia mutualists, there is a chance that the rhizobia will not be transported with it and the plant will have to form new relationships with rhizobia in the new location.3Kellogg Biological Station, Michigan
Fast weeds in farmer’s fieldsadaptation, agriculture, evolution, plants, heredity, geneticsWeeds in agricultural fields cost farmers $28 billion per year in just the United States alone. One of the world’s worst weeds is weedy radish, which evolved from native radish not very long ago. While weedy radish is able to take over agricultural fields, native radish cannot. What causes this difference? Perhaps it could be due to the weedy radish’s ability to flower quickly and make seeds before crops are harvested.2Kellogg Biological Station, Michigan
What big teeth you have! Sexual selection in rhesus macaquesanimals, evolution, sexual selection, sexual dimorphismIn Cayo Santiago there is one of the oldest free-ranging rhesus macaque colonies in the world. Scientists have gathered data on these monkeys and their habitat for over 70 years. The program monitors individual monkeys over their entire lives, and when they die their bodies are recovered and skeletal specimens are stored in a museum. These skeletal specimens can be used by scientists today to ask new and exciting questions, for example, what traits are under sexual selection in this population?3Laboratory of Primate Morphology, University of Puerto Rico Medical Sciences Campus
Is it better to be bigger?adaptation, animals, evolution, predationBrown anoles are very small when they hatch out of the egg. Because of their small size, these anole hatchlings are eaten by many different animals, including birds, crabs, other species of anole lizards, and even adult brown anoles! Predators could be a significant force of natural selection on brown anole hatchlings. Juvenile anoles that get eaten by predators will not survive to reproduce.3Matanzas River, Florida
Is it dangerous to be a showoff?adaptation, animals, evolution, predation, tradeoff, sexual dimorphismBrown anoles are small lizards that are abundant in Florida. They have an extendable red and yellow flap of skin on their throat, called a dewlap. To communicate with other brown anoles, they extend their dewlap and move their head and body. Males have particularly large dewlaps, which they often display to defend territory or attract females. Females also have dewlaps but use them less often. How might natural selection on this trait differ between males and females?3Matanzas River, Florida
Hold on for your life! Part Iadaptation, animals, disturbance, evolution, natural selection, genetic drift, hurricaneIn the fall of 2017, a team of scientists from Harvard University and the Paris Natural History Museum visited Pine Cay and Water Cay in the Turks and Caicos Islands. They were there to collect data on a small local lizard, the Turks and Caicos anole, as part of a larger environmental conservation project. Unbeknownst to them, a storm was brewing to the south of the islands, and it was about to change the entire trajectory of their research.3Turks and Caicos, Caribbean
Hold on for your life! Part IIadaptation, animals, disturbance, evolution, natural selection, genetic drift, hurricaneThe scientists needed to find out how lizards behave in hurricane-force winds. Obviously, they couldn’t stick around to watch lizards ride out a storm, so they designed a safe experiment that would simulate hurricane force winds. They bought the strongest leaf blower they could find, set it up in their hotel room on Pine Cay, and videotaped 40 lizards as they clung to a perch while slowly ramping up the leaf blower until the lizards were blown (unharmed) into a safety net.3Turks and Caicos, Caribbean
tad-toe-detachment-phelsuma_mediumSticky situations: big and small animals with sticky feetadaptation, animals, chemistry, physics, scale, surface areaSticky, or adhesive, toe pads have evolved in many different kinds of animals, including insects, arachnids, reptiles, amphibians, and mammals. The heavier the animal, the more adhesion they will need to stick and support their mass. For tiny species like mites and flies, tiny toes can do the job. Each fly toe only has to be able to support a small amount of weight. But when looking at larger animals like geckos, their increased weight means they need much larger toe pads to support them.4BEACON Center for the Study of Evolution in Action
DSC_0060Lizards, iguanas, and snakes! Oh my! animals, biodiversity, disturbance restoration, urbanPeople have dramatically changed the natural riparian habitat found along rivers and streams. In many urban areas today, these riparian habitats are being rehabilitated with the hope of bringing back native species, such as reptiles. Reptiles, including snakes and lizards, are extremely important to monitor as they play important roles in ecosystems. Are rehabilitation efforts in Phoenix successful at restoring reptile diversity and abundance?3Salt River, Phoenix, Arizona
Blinking out?agriculture, insects, population, biodiversity, ecologyMany people have fond memories of watching fireflies blink across open fields and collecting them in jars as children. This is one of the reasons why fireflies are a beloved insect species. However, there is concern that their populations are in decline. Scientists turned to the longest-running study of fireflies known to science to see if this is the case!2Kellogg Biological Station, Michigan
DSC_0060Urbanization and estuary eutrophicationalgae, eutrophication, fertilization, marine, nitrogen, phosphorus, wetland, urbanEstuaries are very productive habitats found where freshwater rivers meet the ocean. They are important natural filters for water and protect the coast during storms. A high diversity of plants, fish, shellfish and birds call estuaries home. Estuaries are threatened by eutrophication, or the process by which an ecosystem becomes more productive when excess nutrients are added to the system. Parts of the Plum Island Estuary in MA may be more at risk from eutrophication due to their proximity to urban areas.4Plum Island Estuary, Massachusetts
Love that dirty waterenvironmental, urban, water, GIS, landscapes, impervious surfaces, ecosystem servicesAs green spaces are lost to make room for homes and businesses, there are fewer forests and wetlands to filter our drinking water. A team of scientists used the New England Landscapes Future Explorer to study this challenge for the Merrimack River, an important river for the people of New England. 4New England
DSC_0060Green Crabs: Invaders in the Great Marshanimals, invasive species, substrate, wetland, erosionThe introduction of invasive species, such as the European Green Crab, poses a great threat to marshes. Digging behaviors of the Green Crab disturb sediments on the marsh floor and may have lead to the destruction of native eelgrass populations, which are sensitive to disturbance. Scientists aimed to identify locations where crab numbers are low and eelgrass can be restored.2Essex Bay, Massachusetts
DSC_0060The mystery of Plum Island Marshfertilization, fish, marine, mollusk, water, wetlandSalt marshes are among the most productive coastal ecosystems, and support a diversity of plants and animals. Algae and marsh plants feed many invertebrates, like snails and crabs, which are then eaten by larger fish and birds. In Plum Island, scientists have been fertilizing and studying salt marsh creeks to see how added nutrients affect the system. They noticed that fish populations seemed to be crashing in the fertilized creeks, while the mudflats were covered in mudsnails. Could there be a link?3Plum Island Estuary, Massachusetts
DSC_0060Does sea level rise harm saltmarsh sparrows?animals, birds, sea level rise, climate change, disturbance, ecology, wetlandFor the last 100 years, sea levels around the globe have increased dramatically. Salt marshes grow right at sea level and are therefore very sensitive to sea level rise. Saltmarsh sparrows rely completely on salt marshes for feeding and nesting, and therefore their numbers are expected to decline as sea levels rise and they lose nesting sites. Will this threatened bird species decline over time as sea levels rise?3Plum Island Estuary, Massachusetts
DSC_0060Keeping up with the sea levelclimate change, disturbance, ecology, sea level rise, plants, substrate, wetlandSalt marshes are very important habitats for many species and protect the coast from erosion. Unfortunately, rising sea levels due to climate change are threatening these important ecosystems. As sea levels rise, the elevation of the marsh soil must rise as well so the plants have ground high enough to keep them above sea level. Basically, it is like a race between the marsh floor and sea level to see who can stay on top! 3Plum Island Estuary, Massachusetts
DSC_0060Is your salt marsh in the zone?climate change, ecology, plants, sea level rise, substrate, wetlandBeginning in the 1980s, scientist James began measuring the growth of marsh grasses. He discovered that their growth was higher in some years and lower in others and that there was a long-term trend of growth going up over time. Marsh grasses grow around mean sea level, or the average elevation between high and low tides. Are the grasses responding to mean sea level changing year-to-year, and increasing as our oceans warm and water levels rise due to climate change?3Plum Island Estuary, Massachusetts
The case of the collapsing soilclimate change, carbon, ecology, plants, phosphorus, sea level rise, respiration, substrate, wetlandThe Everglades are a unique and vital ecosystem threatened by rising sea levels due to climate change. Recently scientists have observed in some areas of the wetland the soils are collapsing. What is causing this strange phenomena? Sea level rise might be stressing microbes, causing carbon to be lost to the atmosphere through increased respiration.4Everglades, Florida
DSC_0060Marvelous mudecology, environmental, fertilization, mud, phosphorus, substrate, water, wetlandBecause mud is wet most of the time, it tends to have different properties than soil. Dead organic matter (partially decomposed plants) is an important part of mud and tends to build up in wetlands because it is decomposed more slowly under water where microbes do not have all the oxygen they need to break it down quickly. The amounts of organic matter may determine the levels of phosphorus and other nutrients held in wetland muds.2Fort Custer Recreation Area, Michigan
Marsh makeoverbiodiversity, disturbance, ecology, greenhouse gasses, mud, plants, restoration, wetlandThe muddy soils in salt marshes store a lot of carbon, compared to terrestrial dry soils. This is because they are low in oxygen needed for decomposition. For this reason they play a key role in the carbon cycle and climate change. If humans disturb marshes, reducing plant diversity and biomass, are they also disturbing the marsh's ability to sequester carbon? If a marsh is restored, can the carbon holding capacity also be brought back to previous levels?3Oak Island and Neponset Marsh, Boston, Massachusetts
DSC_0060Dangerously boldanimal behavior, animals, tradeoff, fish, predationThere are two main habitats that young bluegill sunfish can use to find food to eat – open water and cover. There is lots of food in the open water, but this habitat also has very few plants for bluegill to hide from predators, like the largemouth bass, so it’s not safe when bluegill are small! The cover habitat has less food, but it has lots of plants that make it hard for predators to see the bluegill. This sets up a situation where there are costs and benefits to using either habitat, called a tradeoff.1Pond Lab, Kellogg Biological Station, Michigan
DSC_0060Which guy should she choose?animal behavior, animals, fish, matingMating behavior is intriguing to study because in many animal species, males use a lot of energy to attract a female. Yet some males are able to attract zero females and other males attract many females. What accounts for this difference? What about the way a male looks, moves, or smells attracts the female? A female could benefit from identifying “high quality” males that would serve as a good father to her offspring or that would make offspring that are attractive to females in the next generation.2Michigan State University lab and British Columbia, Canada
DSC_0060Fish fightsanimal behavior, animals, fish, matingMale stickleback fish fight each other to gain territories along the bottom of the shallow areas of a lake. In these territories, males build a nest out of sand, aquatic plants, and glue they produce from their kidneys. Males then attract females to their territories with courtship dances. If a female likes a male, she will deposit her eggs in his nest. Then the male will care for those eggs and the offspring that hatch. Perhaps more aggressive males are better at defending their territory and nests.2Michigan State University lab and British Columbia, Canada
Clique wars: social conflict in daffodil cichlidsanimal behavior, animals, competition, fishDaffodil cichlids live in social groups of several small fish and one breeding pair. The breeding male and female are the largest fist in the group, and the smaller fish help defend territory against predators and help care for newly hatched baby fish. About 200 social groups together make up a colony. Behavior within a social group may be influenced by the presence of other groups in the colony. For example, neighboring groups can be a threat because they may try to take away territory or resources.4The Ohio State University, Ohio
Fishy originscitizen science, DNA, evolution, fish, PCR, marineThe population of striped bass in New Jersey is a mixed stock, meaning fish come together from different spawning grounds. Scientists want to understand where these fish come from in order to better manage their population. For their study, they needed DNA from many fish, so they turned to fishermen to help collect fin clip samples. They used these samples to identify the stocks migrating to New Jersey, and to determine if they was changing over time.4Monmouth University
DSC_0060Salmon in hot wateradaptation, animals, climate change, evolution, fish, genes, temperature, heredity, geneticsSalmon are important members of freshwater and ocean food webs. Climate change threatens salmon by warming the waters of rivers where they reproduce. To maintain healthy populations, salmon rely on cold, freshwater habitats and may go extinct as temperatures rise. However, some salmon individuals have higher thermal tolerance and are able to survive when water temperatures rise. Scientists want to know whether there is a genetic basis for the variation observed in salmon’s thermal tolerance.4University of Washington Hatchery, Seattle, Washington
6298983_origAre you my species?adaptation, animals, behavior, biodiversity, competition, evolution, fish, matingHow do animals know who to choose as a mate and who is a member of their own species? One way is through communication. Animals collect information about each other and the rest of the world using multiple senses, including sight, sound, and smell. Darters are a group of over 200 colorful fish species that live in lakes and rivers across the US. The bright color patterns on males may signal to females during mating who is a member of the same species and who would make a good mate.3University of Maryland, Baltimore
Why so blue? The determinants of color pattern in killifish, Part Iadaptation, animals, biodiversity, evolution, fish, genes, mating, heredity, geneticsIn nature, animals can be found in a dazzling display of different colors and patterns. Even within one species there can be variation in color. For example, male bluefin killifish can have fins that are bright blue, red, or yellow. Becky, a scientist studying this species noticed an interesting pattern - males found in springs with crystal clear water have mostly red or yellow fins, while males found in swamps have bright blue fins. Becky wants to know, what is the driving mechanism behind this interesting pattern?4University of Illinois, Illinois
Why so blue? The determinants of color pattern in killifish, Part IIadaptation, animals, biodiversity, evolution, fish, genes, mating, heredity, geneticsTo take a closer look at her data, Becky added information on paternal fin color into her analysis.4University of Illinois, Illinois
cricketsBon Appétit! Why do male crickets feed females during courtship?adaptation, animals, behavior, competition, insects, matingIn many species of insects and spiders, males provide females with gifts of food during courtship and mating. This is called nuptial feeding. These offerings are eaten by the female and can take many forms, including prey items the male captured, substances produced by the male, or parts from the male’s body. These gifts can cost the male a lot, so why do they give them? They may increase the male's chances of mating with a female, or they may help the female have more and healthier offspring.4Cornell University, New York
Stop that oxidation! What fruit flies teach us about human healthinsects, model species, cell biology, genetics, cellular processes, oxidationEach of our cells is home to mitochondria, tiny factories whose job is to turn the food we eat into the energy we need to live. But during this process oxidative damage can cause harm to everything in the cell. There are two ways that bodies can prevent oxidative damage: antioxidants and more efficient metabolic pathways. Biz looked at fruit flies with varying genetics for these two strategies and wanted to test whether the level of oxidative damage in eggs and sperm would influence how many offspring a female had.4Technische Universität Dresden
Did you hear that? Inside the world of fruit fly mating songsanimals, communication, insect, process of science, reproducibility, volume, social, behaviorEmma is a neuroscientist who is really interested in studying how brains are able to understand all kinds of communication. She uses fruit flies to figure out how brains process communication through sounds. Emma wanted to test whether lab conditions, such as volume of playback sounds and social isolation affected whether fruit flies in her lab performed a behavior called chaining that had been observed in other labs. 2North Carolina State University
DSC_0060How to escape a predatoradaptation, animal behavior, animals, predation, physiologyStalk-eyed flies have their eyes at the tip of eyestalks on the sides of their heads. Males with longer eyestalks are better at attracting mates – females find them sexy! However, long eyestalks may come at a cost. Males with long eyestalks may not be able to move easily and quickly, and could be easy targets for predators. Males also use a variety of behaviors to defend themselves against predators. Are these behaviors enough to compensate for long eyestalks?4Washington State University and University of Colorado, Denver
DSC_0060The flight of the stalk-eyed flyphysics, moment of inertia, adaptation, animals, flight, physiologyMoment of inertia (I) is an object’s tendency to resist rotation – in other words how difficult it is to make something turn. Stalk-eyed flies have eyes located on the ends of long projections on the sides of their head, called eyestalks. Because moment of inertia goes up with the square of the distance from the axis, we might expect that as the length of the flies’ eyestalks goes up, the harder and harder it will be for the fly to maneuver during flight.4Tel-Aviv University, Israel and University of Colorado, Denver
flyfightHow do brain chemicals influence who wins a fight?animals, behavior, competition, insects, aggression, brain chemistry, physiologyAnimals compete for resources, including space, food, and mates. What are the factors that determine who wins in a fight? Within the same species, larger individuals tend to win fights. However, if two opponents are the same size, other factors can influence outcomes. Serotonin is a chemical compound found in the brains of all animals, including stalk-eyed flies. Even a small amount of this chemical can make a big impact on aggressive behavior, and perhaps the outcome of competition.2University of Colorado, Denver and University of South Dakota
David vs. Goliathanimals, behavior, competition, insects, aggression, brain chemistry, physiologyAnimals in nature often compete for limited resources, like food, territory, and mates. Who wins a battle depends on lots of factors, such as size, aggression, and brain chemistry. In stalk-eyed flies, is a change in brain chemistry enough to tip the balance for smaller males to win in battle?3University of Colorado, Denver and University of South Dakota
Size matters - and so does how you carry it!adaptation, animals, evolution, insects, sexual selection, tradeoffsSome animals have evolved special traits that advertise their fitness to potential mates. Scientists have long predicted that these traits come with both benefits and costs, but John and Jerry have not found costs to the long eye stalks of stalk-eyed flies. Could there be a different answer? In this activity, the team looks at how wing size could play a role.3University of Colorado, Denver and University of St. Thomas
Which would a woodlouse prefer?animals, behavior, ecology, predationWoodlice are small crustaceans that live on land. They look like bugs, but are actually more closely related to crabs and lobsters. To escape predators they hide in dark places. They spend most of their time underground and have very poor eyesight. If they can't see very well, how do they decide where to live?2Kellogg Biological Station, Michigan
Crunchy or squishy? How El Niño events change zooplanktonalgae, animals, marine, El NiñoEl Niño events happen every 5 to 10, and in California they cause the ocean to be much warmer than usual. Warm ocean waters during El Niño events have lower nutrient levels, so fewer phytoplankton grow leading to less food available for zooplankton. This may cause a change balance between the two main groups of zooplankton, “crunchy” crustaceans and “squishy” gelatinous animals. These changes could have cascading effects up the food chain.3San Diego, California
DSC_0060Dangerous aquatic prey: can predators adapt to toxic algae?adaptation, algae, evolution, marine, predationPhytoplankton are microscopic algae that form the base of all aquatic food chains. Some phytoplankton produce toxins, and when these algae reach high population levels it is known as toxic algal blooms. Can predators feeding on toxic prey for many generations evolve resistance, by natural selection, to the toxic prey?4Maine and New Jersey
DSC_0060Finding a footholdanimals, ecology, marine, substrate, waterThe ground at the beach is made of rocks of many different sizes, called substrates. These can range from large boulders down to fine grains of sand, with many size variations in between. Just like there are different types of substrates, there are different types of organisms that can live there. How can we determine which types of organisms prefer which types of substrates?2Puget Sound, Washington
DSC_0060Invasive reeds in the salt marshdisturbance, invasive species, plants, wetlandPhragmites australis is an invasive reed that is taking over saltwater marshes of New England, outcompeting other plants that serve as food and homes for marsh animals. Once Phragmites has invaded, it is sometimes the only plant species left, called a monoculture. Phragmites does best where humans have disturbed a marsh, and scientists were curious why that might be. They thought that perhaps it was caused by changing salinity, or amount of salt in the water, after a marsh is disturbed.2Ipswich High School, Massachusetts
DSC_0060Can a salt marsh recover after restoration?disturbance, ecology, invasive species, plants, wetland, salinity, restorationBefore restoration began, it was clear the Saratoga Creek salt marsh was in trouble. Invasive Phragmites plants covered large areas of the marsh, crowding out native plants and animals. Human activity was thought to be the culprit – storm drains were dumping freshwater into the marsh, lowering salinity. In 1999 a restoration took place to divert freshwater away from the marsh in an attempt to reduce Phragmites numbers. Did it work?2Saratoga Creek Salt Marsh, Rockport, Massachusetts
DSC_0060Make way for mummichogsanimals, biodiversity, disturbance, fish, restoration, wetlandMummichogs are small fish that live in tidal marshes all along the US Atlantic coast. Because they are so widespread and can be found in most streams, they are a valuable tool for scientists looking to compare the health of different marshes. The absence of mummichogs in a salt marsh is a sign that it is highly damaged. Students collected data on mummichog numbers before and after a marsh restoration. Did the restoration successfully bring back mummichogs to the marsh?4Gloucester, Massachusetts
Surviving the flooddisturbance, urban, stream, floods, photosynthesis, respiration, stormwaterStreams are found everywhere, including cities. Urban streams are surrounded by buildings, roads, and parking lots, which can make rain from storms flow through the system very quickly. But how do these rapid flooding events affect the organisms that live there? Andrew and Dave used photosynthesis and respiration from algae to take a closer look!4Mill Creek, Ohio
All washed up? The effect of floods on cutthroat troutanimals, disturbance, ecology, fish, water, stream, floodsFloods are very common disturbances in streams. If floods happen right after fish breed and eggs hatch, young fish that cannot swim strongly may not survive. Although floods can be dangerous for fish, they are also very important for creating new habitat. Cutthroat trout are a species of fish living in Mack Creek, which experiences occasional floods. Trout breed in the early spring, right at the peak of flooding, so scientists are collecting long-term data on this species. Will floods hurt trout populations or help?2Mack Creek, HJ Andrews Experimental Forest, Oregon
DSC_0060Float down the Kalamazoo Riverriver, water, suspended solids, dam, reservoirThere is a lot more in river water than you might think! As the river flows, it picks up bits of dead plants, algae, and other living and non-living particles from the bottom of the river. These suspended solids are important for the river food web, but can be influenced by human activities, such as the construction of dams.2Kalamazoo River, Michigan
An invasive round goby from the Kalamazoo River, Michigan.Round goby, skinny gobylocal adaptation, rapid evolution, animals, biodiversity, fish, Great Lakes, habitat, invasive species, riverWhen invasive species are moved to new habitats, they often have traits that aren’t matched to their new conditions. However, invasive species may be able to adapt in just a few generations. The round goby is a small invasive fish species that arrived in the Great Lakes around 1990, and is now invading rivers as well. Is there evidence that this species has evolved in response to the different conditions found in rivers and lakes?3Kalamazoo River and Great Lakes, Michigan
sweeden1Winter is coming! Can you handle the freeze?local adaptation, ecology, evolution, genes, plantsDepending on where they live, plant populations each face their own challenges. For example, in Arabidopsis thaliana there are some populations of this species growing in very cold habitats, and some populations growing in very warm habitats. The idea that populations of the same species have evolved as a result of certain aspects of their environment is called local adaptation.4Michigan State University, Michigan
adam_microscopeGene expression in stem cellsgene expression, stem cells, geneticsEvery cell in your body contains the same DNA. Genetically identical skin, brain, and muscle cells can look very different and perform very different functions by turning particular genes on and off. But once they differentiate, their role in the body is fixed. Unlike these cells, stem cells have the ability to turn into any other type of cell in the body. Can we uncover the genes expressed in stem cells that give them that ability?4Colorado State University, Colorado
Alien life on Mars – caught in crystals?astrobiology, salt, solution, Mars, extraterrestrial life, chemistryIs there life on other planets besides Earth? This question is not just for science fiction. Scientists are actively exploring the possibility of life on Mars. Mars is cold, dry, and has a very thin atmosphere. However, there might still be places on Mars where life could exist, despite its extreme conditions. While there is no liquid water on the surface of Mars anymore, it once had a saltwater ocean covering much of its surface. Certain solutions of salt may trap liquid water in pockets as it evaporates, preserving conditions for life.2UK Centre for Astrobiology, University of Edinburgh, Great Britain
Working to reduce the plastics problemplastics, synthetic materials, chemistry, biodegradable, elastomer, polymer, monomer, stress, strainPlastics can be shaped easily and are used for many functions, making them extremely popular across the world. However, most plastics negatively impact the environment and some can take thousands of years or longer to break down. Scientists are testing new ways to make plastics that are biodegradable so they can be decomposed and won’t last as long in the environment. How can researchers use knowledge about the chemical properties of different monomers to make alternatives for synthetic plastics? 3Northland College, Wisconsin