Can a salt marsh recover after restoration?

Students collecting salinity data at a transect point. The tall tan grass is Phragmites.

Students collecting salinity data at a transect point. The tall tan grass is Phragmites.

The activities are as follows:

In the 1990s, it was clear that the Saratoga Creek Salt Marsh in Rockport, MA was in trouble. The invasive plant, Phragmites australis, covered large areas of the marsh. The thick patches of Phragmites crowded out native plants and reduced the number of animals, especially migrating birds, because it was too thick to land in. Salt marshes are wetland habitats near ocean coasts that have mostly water-loving, salt-tolerant grasses. Human activity was having a huge effect on the health of the Saratoga Creek Salt Marsh by lowering the salinity, or salt concentrations in the water. Drains built by humans to keep water from rainstorms off the roads changed how water moved through the marsh. The storm drains added a lot of runoff, or freshwater and sediments from the surrounding land, into the marsh after rainstorms. Adding more freshwater to the marsh lowers salinity. The extra sediment that washed into the marsh raised soil levels along the road. If the soil levels get too high, the salty ocean water does not make it into the marsh during high tide. Perhaps these storm drains were changing the salinity of the marshes in a way that helped Phragmites because it grows best when salinity levels are low.

In 1998, scientists, including members of the Rockport Conservation Commission and students from the Rockport Middle School science club, began to look at the problem. They wanted to look at whether freshwater runoff from storm drains may be the reason Phragmites was taking over the marsh. They were curious whether the salinity would increase if they made the storm water drain away from the marsh. They also thought this would stop the runoff sediments from raising soil levels. If so, this could be one way to restore the health of the salt marsh and reduce the amount of Phragmites.

In 1999, a ditch was dug alongside the road to collect runoff from storm drains before it could enter the marsh. A layer of sediment was also removed from the marsh so ocean water could reach the marsh once again. Students set up transects, specific areas chosen to observe and record data. Then they measured the growth and abundances of Phragmites found in these transects. They also measured water salinity levels. Transects were 25 meters long and data were collected every meter. The students decided to compare Phragmites data from before 1999 and after 1999 to see if diverting the water away from the marsh made a difference. They predicted that the number and height of Phragmites in the marsh would go down after freshwater runoff was reduced after restoration.

Screen Shot 2015-08-18 at 5.05.46 PM

View of Saratoga Creek Salt Marsh several years after restoration, showing location of one of the transects. Native grasses are growing in the foreground.

View of Saratoga Creek Salt Marsh several years after restoration, showing location of one of the transects. Native grasses are growing in the foreground.

Featured scientists: Liz Duff from Mass Audubon, Eric Hutchins from NOAA, and Bob Allia and 7th graders from Rockport Middle School

Written by: Bob Allia, Cindy Richmond, and Dave Young

Flesch–Kincaid Reading Grade Level = 9.5

For more information on this project, including datasets and more scientific background, check out their website: Salt Marsh Science

4

Speak Your Mind

*