Breathing in, Part 1

Susan stands in a reforestation experiment near the Chesapeake Bay.

The activities are as follows:

Photosynthesis is the process by which trees and other plants trap the sun’s energy within the molecular bonds of glucose (C6H12O6), a type of sugar. During photosynthesis, oxygen (O2) is released as a byproduct. For this reason, trees are often portrayed as the lungs of the planet “breathing out” oxygen.

Oxygen is then used by living things for cellular respiration. Your cells use oxygen to free the energy stored within glucose. That is why you, and most living things, need oxygen to survive.

But there’s another aspect of photosynthesis that’s just as important as the release of oxygen. Look at a tree or other plant out your window – how did it get so big? The answer is in the equation for photosynthesis. Carbon dioxide (CO2) and water (H2O) provide the carbon, hydrogen, and oxygen needed to build glucose. Trees use glucose as both an energy source and construction material. As they grow, they arrange glucose in long, winding structures. Some of this carbon becomes part of the plant for as long as they live. This means that the carbon that builds plants comes from the air! This process of pulling carbon out of the atmosphere and holding on to it for long periods of time is known as carbon sequestration or carbon accumulation. It’s what the trees do when they use photosynthesis to “breathe in.”

These processes caught Kristina’s interest. She wanted to know more about how carbon accumulation differed across the globe. So, in 2006, she and a small team of scientists created a database using information from 91 studies on carbon in trees.

In the meantime, Susan was working at the Nature Conservancy and getting tons of questions from people who wanted to plant new forests to help fight climate change. People wanted to know what kinds of forests to plant, and how much carbon they might be able to accumulate. Susan, like Kristina, knew that carbon accumulation differed across the globe and wanted to give people the right numbers for the right places. She started gathering carbon data by sifting through thousands of scientific papers. In the process, she found Kristina’s work. One day, Susan called Kristina to chat.

Kristina and Susan decided they needed to work together to learn more about how carbon accumulation rates differ across various types of forests found around the world. So, they set out to build on previous research and get more accurate measurements. Instead of doing their own new study, they needed to gather data from thousands of existing studies in locations from all over the earth. So that’s exactly what they did. Kristina and Susan, along with an international team of researchers, began their work creating ForC, the Global Forest Carbon Database.

ForC is an open-access database containing over 40,000 records from more than 10,000 plots in over 1,500 geographic areas. All of the data come from published research by scientists and include studies from every forested climate zone. It is a living database that is always being updated as scientists publish their work, making it the most complete source of forest carbon data in the world! It was exactly what Kristina and Susan needed.

Kristina and Susan used ForC to investigate global carbon capture by young regrowing forests. Based on their previous research, they thought that, since tropical forests regrow fastest due to a year-round warm and wet climate, they would have the highest rate of carbon accumulation. In order to study carbon accumulation, they selected 13,112 measurements from young, regrowing (<30 years old) forests around the world. They grouped measurements by forest type, averaged them, and compared their data. With these values, they could inform policy decisions and prioritize forest regrowth in parts of the world that would have the highest impact. Review the table below for information on the six main forest types that Kristina and Susan studied.

Featured scientists: Kristina J. Anderson-Teixeira, Smithsonian Conservation Biology Institute & Susan C. Cook-Patton, The Nature Conservancy. Written by Ryan Helcoski.

Flesch–Kincaid Reading Grade Level = 9.1

Additional classroom resources for this Data Nugget:
If you would like to explore the ForC database in your classroom, students can view the shiny app. Anyone that feels even more ambitious can see the raw data.

Here are two scientific articles related to this activity:

Cook-Patton, SC, Leavitt, SM, Gibbs, D. et al. 2020. Mapping carbon accumulation potential from global natural forest regrowth. Nature 585, 545–550.

Anderson KJ, Allen AP, Gillooly JF, Brown JH. 2006. Temperature-dependence of biomass accumulation rates during secondary succession. Ecology Letters Jun: 9(6):673-82.

The carbon stored in mangrove soils

Tall mangroves growing close to the coast.

The activities are as follows:

In the tropics and subtropics, mangroves dominate the coast. There are many different species of mangroves, but they are all share a unique characteristic compared to other trees – they can tolerate having their roots submerged in salt water.

Mangroves are globally important for many reasons. They form dense forested wetlands that protect the coast from erosion and provide critical habitat for many animals. Mangrove forests also help in the fight against climate change. Carbon dioxide is a greenhouse gas that is a main driver of climate change. During photosynthesis, carbon dioxide is absorbed from the atmosphere by the plants in a mangrove forest. When plants die in mangrove forests, decomposition is very slow. The soils are saturated with saltwater and have very little oxygen, which decomposers need to break down plants. Because of this, carbon is stored in the soils for a long time, keeping it out of the atmosphere.

Sean is a scientist studying coastal mangroves in the Florida Everglades. Doing research in the Everglades was a dream opportunity for Sean. He had long been fascinated by the unique plant and animal life in the largest subtropical wetland ecosystem in North America. Mangroves are especially exciting to Sean because they combine marine biology and trees, two of his favorite things! Sean had previously studied freshwater forested wetlands in Virginia, but had always wanted to spend time studying the salty mangrove forests that exist in the Everglades. 

Sean Charles taking soil samples amongst inland short mangroves.

Sean arrived in the Everglades with the goal to learn more about the factors important for mangrove forests’ ability to hold carbon in their soils. Upon his arrival, he noticed a very interesting pattern – the trees were much taller along the coast compared to inland. This is because mangroves that grow close to the coast have access to important nutrients found in ocean waters, like phosphorus. These nutrients allow the trees to grow large and fast. However, living closer to the coast also puts trees at a higher risk of damage from storms, and can lead to soils and dead plants being swept out to sea. 

Sean thought that the combination of these two conditions would influence how much carbon is stored in mangrove soils along the coast and inland. Larger trees are generally more productive than smaller ones, meaning they might contribute more plant material to soils. This led Sean to two possible predictions. The first was that there might be more carbon in soils along the coast because taller mangroves would add more carbon to the soil compared to shorter inland mangroves. However, Sean thought he might also find the opposite pattern because the mangroves along the coast have more disturbance from storms that could release carbon from the soils. 

To test these competing hypothesis, the team of scientists set out into the Everglades in the Biscayne National Park in Homestead, Florida. Their mission was to collect surface soils and measure mangrove tree height. To collect soils, they used soil cores, which are modified cylinders that can be hammered into the soil and then removed with the soil stuck in the tube. Tree height was measured using a clinometer, which is a tool that uses geometry to estimate tree height. They took these measurements along three transects. The first transect was along the coast where trees had an average height of 20 meters. The second transect between the coast and inland wetlands where trees were 10 meters tall, on average. The final transect was inland, with average tree height of only 1 meter tall.  With this experimental design Sean could compare transects at three distances from the coast to look for trends. 

Once Sean was back in the lab, he quantified how much carbon was in the soil samples from each transect by heating the soil in a furnace at 500 degrees Celsius. Heating soils to this temperature causes all organic matter, which has carbon, to combust. Sean measured the weight of the samples before and after the combustion. The difference in weight can be used to calculate how much organic material combusted during the process, which can be used as an estimate of the carbon that was stored in the soil. 

Featured scientist: Sean Charles from Florida International University

Flesch–Kincaid Reading Grade Level = 9.6

Additional teacher resources related to this Data Nugget:

Are forests helping in the fight against climate change?

Bill setting up a large metal tower in Harvard Forest in 1989, used to measure long-term CO2 exchange.

The activities are as follows:

As humans drive cars and use electricity, we release carbon in the form of carbon dioxide (CO2) into the air. Because COhelps to trap heat near the surface of the earth, it is known as a greenhouse gas and contributes to climate change. However, carbon is also an important piece of natural ecosystems, because all living organisms contain carbon. For example, when plants photosynthesize, they take COfrom the air and turn it into other forms of carbon: sugars for food and structural compounds to build their stems, roots, and leaves. When the carbon in a living tree’s trunk, roots, leaves, and branches stays there for a long time, the carbon is kept out of the air. This carbon storage helps reduce the amount of COin the atmosphere. However, not all of the COthat trees take from the air during photosynthesis remains as part of the tree. Some of that carbon returns to the air during a process called respiration.

Another important part of the forest carbon cycle happens when trees drop their leaves and branches or die. The carbon that the tree has stored breaks down in a process called decomposition. Some of the stored carbon returns to the air as CO2, but the rest of the carbon in those dead leaves and branches builds up on the forest floor, slowly becoming soil. Once carbon is stored in soil, it stays there for a long time. We can think of forests as a balancing act between carbon building up in trees and soil, and carbon released to the air by decomposition and respiration. When a forest is building up more carbon than it is releasing, we call that area a carbon sink, because overall more COis “sinking” into the forest and staying there. On the other hand, when more carbon is being released by the forest through decomposition and respiration, that area is a carbon source, because the forest is adding more carbon back into the atmosphere than it is taking in through photosynthesis.

In the 1990s, scientists began to wonder what role forests were having in this exchange of carbon in and out of the atmosphere. Were forests overall storing carbon (carbon sink), or releasing it (carbon source)? Bill is one of the scientists who decided to explore this question. Bill works at the Harvard Forest in central Massachusetts, a Long-Term Ecological Research site that specializes in setting up big experiments to learn how the environment works. Bill and his team of scientists realized they could measure the COcoming into and out of an entire forest. They built large metal towers that stand taller than the forest trees around them and use sensors to measure the speed, direction, and COconcentration of each puff of air that passes by. Bill compares the COin the air coming from the forest to the ones moving down into the forest from the atmosphere. With the COdata from both directions, Bill calculates the Net Ecosystem Exchange (or NEE for short). When more carbon is moving into the forest than out, NEE is a negative number because COis being taken out of the air. This often happens during the summer when trees are getting a lot of light and are therefore photosynthesizing. When more COis leaving the forest, it means that decomposition and respiration are greater than photosynthesis and the NEE is a positive number. This typically happens at night and in the winter, when trees aren’t photosynthesizing but respiration and decomposition still occur. By adding up the NEE of each hour over a whole year, Bill finds the total amount of COthe forest is adding or removing from the atmosphere that year.

Bill and his team were very interested in understanding NEE because of how important it is to the global carbon cycle, and therefore to climate change. They wanted to know which factors might cause the NEE of a forest to vary. Bill and other scientists collected data on carbon entering and leaving Harvard Forest for many years to see if they could find any patterns in NEE over time. By looking at how the NEE changes over time, predictions can be made about the future: are forests taking up more COthan they release? Will they continue to do so under future climate change?

Featured scientist: Bill Munger from Harvard University. Written by: Fiona Jevon.

Flesch–Kincaid Reading Grade Level = 10.5

Additional teacher resource related to this Data Nugget:

  • There are several publications based on the data from the Harvard Forest LTER. Citations below:
    • Wofsy, S.C., Goulden, M.L., Munger, J.W., Fan, S.M., Bakwin, P.S., Daube, B.C., Bassow, S.L. and Bazzaz, F.A., 1993. Net exchange of CO2 in a mid-latitude forest. Science260(5112), pp.1314-1317.
    • Goulden, M.L., Munger, J.W., Fan, S.M., Daube, B.C. and Wofsy, S.C., 1996. Exchange of carbon dioxide by a deciduous forest: response to interannual climate variability. Science271(5255), pp.1576-1578.
    • Barford, C.C., Wofsy, S.C., Goulden, M.L., Munger, J.W., Pyle, E.H., Urbanski, S.P., Hutyra, L., Saleska, S.R., Fitzjarrald, D. and Moore, K., 2001. Factors controlling long-and short-term sequestration of atmospheric CO2 in a mid-latitude forest. Science294(5547), pp.1688-1691.
    • Urbanski, S., Barford, C., Wofsy, S., Kucharik, C., Pyle, E., Budney, J., McKain, K., Fitzjarrald, D., Czikowsky, M. and Munger, J.W., 2007. Factors controlling CO2 exchange on timescales from hourly to decadal at Harvard Forest. Journal of Geophysical Research: Biogeosciences112(G2).
    • Wehr, R., Munger, J.W., McManus, J.B., Nelson, D.D., Zahniser, M.S., Davidson, E.A., Wofsy, S.C. and Saleska, S.R., 2016. Seasonality of temperate forest photosynthesis and daytime respiration. Nature534(7609), p.680.
  • Our Changing Forests Schoolyard Ecology project – Do your students want to get involved with research monitoring carbon cycles in forests? Check out this hands-on field investigation, led by a team of Ecologists at Harvard Forest. Students can contribute to this study by monitoring a 20 meter by 20 meter plot in a wooded area near their schools.
  • Video showcasing 30 years of research at the Harvard Forest LTER
  • A cool article about the diversity of research being done at Harvard Forest – Researchers blown away by hurricane simulation
  • Additional images from Harvard Forest, diagrams of NEE, and a vocabulary list can be found in this PowerPoint.

Urbanization and estuary eutrophication

Charles Hopkinson out taking dissolved O2 measurements.

Charles Hopkinson out taking dissolved O2 measurements.

The activities are as follows:

An estuary is a habitat formed where a freshwater river or stream meets a saltwater ocean. Many estuaries can be found along the Atlantic coast of North America. Reeds and grasses are the dominant type of plant in estuaries because they are able to tolerate and grow in the salty water. Where these reeds and grasses grow they form a special habitat called a salt marsh. Salt marshes are important because they filter polluted water and buffer the land from storms. Salt marshes are the habitat for many different kinds of plants, fish, shellfish, and birds.

Hap Garritt removing an oxygen logger from Middle Road Bridge in winter.

Hap Garritt removing an oxygen logger from Middle Road Bridge in winter.

Scientists are worried because some salt marshes are in trouble! Runoff from rain washes nutrients, usually from lawn fertilizers and agriculture, from land and carries them to estuaries. When excess nutrients, such as nitrogen or phosphorus, enter an ecosystem the natural balance is disrupted. The ecosystem becomes more productive, called eutrophication. Eutrophication can cause major problems for estuaries and other habitats.

With more nutrients in the ecosystem, the growth of plants and algae explodes. During the day, algae photosynthesize and release O2 as a byproduct. However, excess nutrients cause these same algae grow densely near the surface of the water, decreasing the light available to plants growing below the water on the soil surface. Without light, the plants die and are broken down by decomposers. Decomposers, such as bacteria, use a lot of O2 because they respire as they break down plant material. Because there is so much dead plant material for decomposers, they use up most of the O2 dissolved in the water. Eventually there is not enough O2 for aquatic animals, such as fish and shellfish, and they begin to die-off as well.

Two features can be used to identify whether eutrophication is occurring. The first feature is low levels of dissolved O2 in the water. The second feature is when there are large changes in the amount of dissolved O2 from dawn to dusk. Remember, during the day when it’s sunny, photosynthesis converts CO2, water, and light into glucose and O2. Decomposition reverses the process, using glucose and O2 and producing CO2 and water. This means that when the sun is down at night, O2 is not being added to the water from photosynthesis. However, O2 is still being used for decomposition and respiration by animals and plants at night.

The scientists focused on two locations in the Plum Island Estuary and measured dissolved O2 levels, or the amount of O2 in the water. They looked at how the levels of O2 changed throughout the day and night. They predicted that the upper part of the estuary would show the two features of eutrophication because it is located near an urban area. They also predicted the lower part of the estuary would not be affected by eutrophication because it was farther from urban areas.

A view of the Plum Island estuary

A view of the Plum Island estuary

Featured scientists: Charles Hopkinson from University of Georgia and Hap Garritt from the Marine Biological Laboratory Ecosystems Center

Flesch–Kincaid Reading Grade Level = 9.6

Coral bleaching and climate change

A Pacific coral reef with many corals

A Pacific coral reef with many corals

The activities are as follows:

Éste Data Nugget también está disponible en Español:

Corals are animals that build coral reefs. Coral reefs are home to many species of animals – fish, sharks, sea turtles, and anemones all use corals for habitat! Corals are white, but they look brown and green because certain types of algae live inside them. Algae, like plants, use the sun’s energy to make food. The algae that live inside the corals’ cells are tiny and produce more sugars than they themselves need. The extra sugars become food for the corals. At the same time, the corals provide the algae a safe home. The algae and corals coexist in a relationship where each partner benefits the other, called a mutualism: these species do better together than they would alone.

When the water gets too warm, the algae can no longer live inside corals, so they leave. The corals then turn from green to white, called coral bleaching. Climate change has been causing the Earth’s air and oceans to get warmer. With warmer oceans, coral bleaching is becoming more widespread. If the water stays too warm, bleached corals will die without their algae mutualists.

Scientist Carly working on a coral reef

Scientist Carly working on a coral reef

Carly is a scientist who wanted to study coral bleaching so she could help protect corals and coral reefs. One day, Carly observed an interesting pattern. Corals on one part of a reef were bleaching while corals on another part of the reef stayed healthy. She wondered, why some corals and their algae can still work together when the water is warm, while others cannot?

Ocean water that is closer to the shore (inshore) gets warmer than water that is further away (offshore). Perhaps corals and algae from inshore reefs have adapted to warm water. Carly wondered whether inshore corals are better able to work with their algae in warm water because they have adapted to these temperatures. If so, inshore corals and algae should bleach less often than offshore corals and algae. Carly designed an experiment to test this. She collected 15 corals from inshore and 15 from offshore reefs in the Florida Keys. She brought them into an aquarium lab for research. She cut each coral in half and put half of each coral into tanks with normal water and the other half into tanks with heaters. The normal water temperature was 27°C, which is a temperature that both inshore and offshore corals experience during the year. The warm water tanks were at 31°C, which is a temperature that inshore corals experience, but offshore corals have never previously experienced. Because of climate change, offshore corals may experience this warmer temperature in the future. After six weeks, she recorded the number of corals that bleached in each tank.

 Featured scientist: Carly Kenkel from The University of Texas at Austin

Flesch–Kincaid Reading Grade Level = 8.0

There are two scientific papers associated with the data in this Data Nugget. The citations and PDFs of the papers are below. 

If your students are looking for more data on coral bleaching, check out HHMI BioInteractive’s classroom activity in which students use authentic data to assess the threat of coral bleaching around the world. Also, check out the two videos below!

  • Another BioInteractive video, appropriate for upper level high school classrooms. Visualizes the process of coral bleaching at different scales. Video includes lots of complex vocabulary about cells and the process of photosynthesis.

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

Fertilizing biofuels may cause release of greenhouse gasses

An aerial view of the experiment at MSU where biofuels are grown

An aerial view of the experiment at MSU where biofuels are grown. Photo credit: K. Stepnitz, MSU

The activities are as follows:

Greenhouse gases in our atmosphere, like carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O), trap heat from the sun and warm the earth. We need some greenhouse gases to keep the planet warm enough for life. But today, the majority (97%) of scientists agree that the levels of greenhouse gases are getting dangerously high and are causing changes in our climate that may be hard for us to adjust to.

Scientist Leilei collecting samples of gasses released by the growing of biofuels

Scientist Leilei collecting samples of gasses released by the growing of biofuels. Photo credit: K. Stepnitz, MSU

When we burn fuels to heat and cool our homes or power our cars we release greenhouse gasses. Most of the energy used today comes from fossil fuels. These energy sources are called “fossil” fuels because they come from plants, algae, and animals that lived hundreds of millions of years ago! After they died, their tissues were buried and slowly turned into coal, oil, and natural gas. An important fact about fossil fuels is that when we use them, they release CO2 into our atmosphere that was stored millions of years ago. The release of this stored carbon is adding more and more greenhouse gases to our atmosphere, and much faster than today’s plants and algae can remove during photosynthesis. In order to reduce the effects of climate change, we need to change the way we use energy and think of new ways to power our world.

One potential solution could be to grow our fuel instead of drilling for it. Biofuels are a potential substitute for fossil fuels. Biofuels, like fossil fuels, are made from the tissues of plants. The big difference is that they are made from plants that are alive and growing today. Unlike fossil fuels that emit CO2, biofuel crops first remove CO2 from the atmosphere as the plants grow and photosynthesize. When biofuels are burned for fuel, the CO2 is emitted back into the atmosphere, balancing the total amount that was removed and released.

Scientists are interested in figuring out if biofuels make a good replacement for fossil fuels. It is still not clear if the plants that are used to produce biofuels are able to absorb enough CO2 to offset all of the greenhouse gases that are emitted when biofuels are produced. Additional greenhouse gases are emitted when producing biofuels because it takes energy to plant, water, and harvest the crops, as well as to convert them into fuel. In order to maximize plant growth, many biofuel crops are fertilized by adding nitrogen (N) fertilizer to the soil. However, if there is too much nitrogen in the soil for the crops to take up, it may instead be released into the atmosphere as the gas nitrous oxide (N2O). N2O is a greenhouse gas with a global warming potential nearly 300 times higher than CO2! Global warming potential is a relative measure of how much heat a greenhouse gas traps in the atmosphere.

Leilei is a scientist who researches whether biofuels make a good alternative to fossil fuels. He wondered what steps farmers could take to reduce the amount of N2O released when growing biofuel crops. Leilei designed an experiment to determine how much N2O is emitted when different amounts of nitrogen fertilizer are added to the soil. In other words, he wanted to know whether the amount of N2O that is emitted into the atmosphere is associated with how much fertilizer is added to the field. To test this idea, he looked at fields of switchgrass, a perennial grass native to North America. Switchgrass is one of the most promising biofuel crops. The fields of switchgrass were first planted in 2008 as a part of a very large long-term study at the Kellogg Biological Station in southwest Michigan. The researchers set up eight fertilization treatments (0, 28, 56, 84, 112, 140, 168, and 196 kg N ha−1) in four replicate fields of switchgrass, for a total of 32 research plots. Leilei measured how much N2O was released by the soil in the 32 research plots for many years. Here we have two years of Leilei’s data.

Featured scientist: Leilei Ruan from Michigan State University

Flesch–Kincaid Reading Grade Level = 10.1

Additional teacher resources related to this Data Nugget:

logo

SaveSave

SaveSave

Fair traders or freeloaders?

Measuring chlorophyll content in the greenhouse

Measuring chlorophyll content in the greenhouse

The activities are as follows:

When two species do better when they cooperate than they would on their own, the relationship is called a mutualism. One example of a mutualism is the relationship between a type of bacteria, rhizobia, and legume plants. Legumes include plants like peas, beans, soybeans, and clover. Rhizobia live in bumps on the legume roots, where they trade their nitrogen for sugar from the plants. Rhizobia fix nitrogen from the air into a form that plants can use. This means that legumes that have rhizobia living in their roots can get more nitrogen than those that don’t.

Under some conditions, this mutualism can break down. For example, if one of the traded resources is very abundant in the environment. When the plant doesn’t need the nitrogen traded by rhizobia, it doesn’t trade as many sugars to the rhizobia. This could cause the rhizobia to evolve to be less cooperative as well. Less-cooperative rhizobia may be found where the soil already has lots of nitrogen. These less-cooperative bacteria are freeloaders: they fix less nitrogen, but still get sugars from the plant and other benefits of living in nodules on their roots.

Photo by Tomomi Suwa, 2013

Rhizobia nodules on plant roots. In exchange for carbon and protection in the nodules from plants, rhizobia provide fixed nitrogen for plants.

One very important legume crop species is the soybean. Soybeans are used to produce vegetable oil, tofu, soymilk, and many other food products. Soybeans trade with rhizobia for nitrogen, but often farmers add more nitrogen into the field as fertilizer. Since farms use a lot of nitrogen fertilizer, researchers at KBS were interested in how different types of farming affected the plant-rhizobia mutualism.

They grew soybean plants in a greenhouse and added rhizobia from three different farms: a high N farm, low N farm, and organic farm that used no N fertilizer. After four weeks, the researchers measured chlorophyll content of the soybean plants. Healthy plants that have lots of nitrogen will have high chlorophyll content, and plants with not enough nitrogen will have low chlorophyll content. Because high nitrogen could lead to the evolution of less-cooperative rhizobia, they expected that rhizobia from organic plots would be most cooperative. They predicted rhizobia from high N plots would be the least cooperative, and rhizobia from low N plots would fall somewhere in the middle. More-cooperative rhizobia provide more nitrogen, so the researchers expected plants grown with cooperative rhizobia to have higher chlorophyll content than plants receiving less-cooperative rhizobia.

Featured scientist: REU Jennifer Schmidt from the Kellogg Biological Station

Flesch–Kincaid Reading Grade Level = 10.1

For more information on the evolution of cheating rhizobia, check out these popular science articles:

If you are interested in performing your own classroom experiment using the plant-rhizobium mutualism, check out this paper published in the American Biology Teacher describing methods and a proposed experimental design: Suwa and Williamson 2014

SaveSave

Do insects prefer local or foreign foods?

One of the invasive plants found in the experiment, Centaurea stoebe.

One of the invasive plants found in the experiment, Centaurea stoebe.

The activities are as follows:

Insects that feed on plants, called herbivores, can have big effects on how plants grow. Herbivory can change the size and shape of plants, the number of flowers and seeds, and even which plant species can survive in a habitat. A plant with leaves eaten by insect herbivores will likely do worse than a plant that is not eaten.

Plants that naturally grow in an area without human interference are called native plants. When a plant is moved by humans to a new area and lives and grows outside of its natural range, it is called an exotic plant. Sometimes exotic plants become invasive, meaning they grow large and fast, take over habitats, and push out native species. What determines if an exotic species will become invasive? Scientists are very interested in this question. Understanding what makes a species become invasive could help control invasions already underway and prevent new ones in the future.

Because herbivory affects how big and fast a plant can grow, local herbivores may determine if an exotic plant thrives in its new habitat and becomes invasive. Elizabeth, a plant biologist, is fascinated by invasive species and wanted to know why they are able to grow bigger and faster than native and other exotic species. One possibility, she thought, is that invasive species are not recognized by the local insect herbivores as good food sources and thus get less damage from the insects. Escaping herbivory could allow invasive species to grow more and may explain how they become invasive.

To test this hypothesis, Elizabeth planted 25 native, 25 exotic, and 11 invasive species in a field in Michigan. This field was already full of many plants and had many insect herbivores. The experimental plants grew from 2011 to 2013. Each year, Elizabeth measured herbivory on 10 individuals of each of the 61 species, for a total of 610 plants. To measure herbivory, she looked at the leaves on each plant and determined how much of each leaf was eaten by herbivores. She then compared the area that was eaten to the total area of the leaf and calculated the proportion leaf area eaten by herbivores. Elizabeth predicted that invasive species would have a lower proportion of leaf area eaten compared to native and noninvasive exotic plants.

ERHpics

Featured scientist: Elizabeth Schultheis from Michigan State University

Flesch–Kincaid Reading Grade Level = 10.9

There is one scientific paper associated with the data in this Data Nugget. The citation and PDF of the paper is below, as well as a link to access the full dataset from the study:

For two lesson plans covering the Enemy Release Hypothesis, click here and here

Aerial view of the experiments discussed in this activity:

ERH Field site 2

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave