Changing climates in the Rocky Mountains

Lower elevation site in the Rocky Mountains: Temperate conifer forest. Photo Credit: Alice Stears.

The activities are as follows:

Each type of plant needs specific conditions to grow and thrive. If conditions change, such as temperature or the amount of precipitation, plant communities may change as well. For example, as the climate warms, plant species might start to shift to higher latitudes to follow the conditions where they grow best. But what if a species does well in cold climates found at the tops of mountains? Because they have nowhere to go, warming puts that plant species at risk.  

To figure out if species are moving, we need to know where they’ve lived in the past, and if climates are changing. One way that we can study both things is to use the Global Vegetation Project. The goal of this project is to curate a global database of plant photos that can be used by educators and students around the world. Any individual can upload photos and identify plant species. The project then connects each photo to information on the location’s biome, ecoregion, and climate, including data tracking precipitation and temperature over time. The platform can also be used to explore how the climates of different regions are changing and use that information to predict how plant communities may change. 

Daniel is a scientist who is interested in sharing the Global Vegetation Project data with students. Daniel became interested in plants and vegetation when he learned in college that you can simply walk through the woods and prairie, collect wild seeds, germinate the plants, and grow them to restore degraded landscapes. Plants set the backdrop for virtually every landscape that we see. He thinks plants deserve our undivided attention.

Daniel and his team wanted to create a resource where students can look deeper into plant communities and their climates. Much of the inspiration for the Global Vegetation Project came from the limitations to undergraduate field research during the COVID-19 pandemic. Students in ecology and botany classes, who would normally observe and study plants in the field, were prevented from having these opportunities. By building an online database with photos of plants, students can explore local plants without having to go into the field and can even see plants from faraway places. 

Daniel’s lab is based in the Rocky Mountains in Wyoming, where the plants are a showcase in both biodiversity and beauty. These communities deal with harsh conditions: cold, windy and snowy winters, hot and dry summers, and unpredictable weather during spring and fall. The plants rely on winter snow slowly melting over spring and into summer, providing moisture that can help them survive the dry summers. 

The Rocky Mountains are currently facing many changes due to climate change, including drought, increased summer temperatures, wildfires, and more. This creates additional challenges for the plants of the Rockies. Drought reduces the amount of precipitation, decreasing the amount of water available to plants. In addition, warmer temperatures in winter and spring shift more precipitation to rain instead of snow and melts snow more quickly. Rain and melted snow rapidly move through the landscape, becoming less available to plants in need. On top of all this, hotter, drier summers further decrease the amount of water available, stressing plants in an already harsh environment. If these trends continue, there could be significant impact on the types of plants that are able to grow in the Rocky Mountains. These changes will have an impact on the landscape, organisms that rely on plants, and humans as well.

Daniel and his colleagues pulled climate data from a Historic period (1961-2009) and Current period (2010-2018). They selected two locations in Wyoming to focus on: a lower elevation montane forest and a higher elevation site. To study climate, they focused on temperature and precipitation because they are important for plants. They wanted to study how temperature and precipitation patterns changed overall and how they changed in different seasons. They predicated temperatures would be higher in the Current period compared to the Historic period in both locations. For precipitation, they predicted there would be drier summers and wetter springs.

Featured scientist: Daniel Laughlin from The University of Wyoming. Written by: Matt Bisk.

Flesch–Kincaid Reading Grade Level = 10.5

Additional teacher resource related to this Data Nugget:

Mowing for monarchs, Part II

In Part I you explored data that showed monarchs prefer to lay their eggs on young milkweeds that have been mowed, compared to older milkweed plants. But, is milkweed age the only factor that was changed when Britney and Gabe mowed patches of milkweeds? You will now examine whether mowing also affected the presence of monarch predators.

A scientist measuring a milkweed plant.
A scientist, Lizz D’Auria, counting the number of monarch predators on milkweed plants in the experiment.

The activities are as follows:

The bright orange color of monarch butterflies signals to their enemies that they are poisonous. This is a warning that they do not make a tasty meal. Predators, like birds and spiders, that try to eat monarch butterflies usually become sick. Many people think that monarch butterflies have no enemies because they are poisonous. But, in fact they do have a lot of predators, especially when they are young.

Monarchs become poisonous from the food they eat. Adult monarchs lay their eggs on milkweed plants, which have poisonous sap. When the eggs hatch, the caterpillars chomp on the leaves. Young caterpillars are less poisonous because they haven’t eaten much milkweed yet. And monarch eggs are not poisonous at all to predators.

Britney and Gabe met with their friends, Doug and Nate, who are scientists. Doug and Nate thought that Britney and Gabe’s experiment might have changed more than just the age of the milkweed plants in the patches they mowed. By mowing their field sites they were also cutting down the plants in the rest of the community. These plants provide habitat for predators, so mowing all of the plants would affect the predators as well. These ideas led to another potential explanation for the results Britney and Gabe saw in their data. Because all plants were cut in the mowed patches, there was nowhere for monarch predators to hang out. Britney and Gabe came up with an alternative hypothesis that perhaps monarch butterflies were choosing to lay their eggs on young milkweed plants because there were fewer predators nearby. To test this new idea, Britney and Gabe went back to their experimental site and started collecting data on the presence of predators in addition to egg number. Remember that in each location, they had a control patch, which was left alone, and a treatment patch that they mowed. The control patches had older milkweed plants and a full set of plants in the community. The mowed patches had young milkweed plants with short, chopped plants nearby. For the whole summer, they went out weekly to all of the patches. They counted the number of predators found on the milkweed plants so they could compare the mowed and unmowed patches.

Predators of monarch butterflies.
There are many different species that eat monarch butterfly eggs and young caterpillars. These are just a few of the species that Gabe and Britney observed during their experiment.

Featured scientists: Doug Landis and Nate Haan from Michigan State University and Britney Christensen and Gabe Knowles from Kellogg Biological Station LTER.

Flesch–Kincaid Reading Grade Level = 8.2

Additional resources related to this Data Nugget:

Going underground to investigate carbon locked in soils 

Mineral-associated organic matter (MAOM) at the bottom of a test tube in a salt solution.

The activities are as follows:

Soil is an important part of the carbon cycle because it traps carbon, keeping it out of the atmosphere and locked underground. At a global level, the amount of carbon stored by soil is more than is found in all of the plants and the atmosphere combined. Carbon trapped underground does not contribute to the rising carbon dioxide concentration in our atmosphere that leads to climate change. For decades, scientists have been researching how much carbon our soils can store to understand its role in slowing the pace of climate change.

Carbon enters the soil when plants and animals die, and their organic matter is decomposed by soil bacteria and fungi. Sometimes it is broken down into very small molecules. These molecules become attached to minerals in the soil, like clay particles. We call this mineral-associated organic matter (MAOM). The carbon is connected to minerals with very strong chemical bonds. Because these bonds are hard to break, the carbon stays in the soil for long periods of time and accumulates on clay minerals. 

Some studies have shown that the carbon in MAOM can be trapped in soils for thousands of years! When more of the carbon in the soil is attached to minerals and locked in the soil for longer time periods, the ecosystem is serving an important role in keeping carbon out of the atmosphere. 

Ashley in the lab, using a saltwater solution to isolate mineral-associated organic matter (MAOM) from soil samples.

Ashley is working to understand how much stable carbon there is in soils, and the role of climate. Microbes work faster in warmer and wetter conditions, which results in quicker decomposition. Ashley thought this rapid decomposition would cause organic matter to be broken down into smaller particles sooner. Therefore, she thought that in warmer or wetter environments, more soil carbon would attach to minerals and become stable MAOM. In colder or drier environments, she expected this process to happen more slowly, leading to a smaller amount of MAOM in the soil.

To test these ideas, Ashley used soil samples from forests with different climates throughout the Eastern United States. Soil samples were collected from New Hampshire to Alabama by teams of researchers using the same sampling protocol. The samples were mailed to Ashley’s lab at Indiana University for analysis. Ashley measured the amount of MAOM in each soil sample by taking advantage of a key feature: MOAM is heavy! Ashley submerged each soil sample in a saltwater solution, and the parts that floated were discarded, while the parts that sunk to the bottom were classified as MAOM. She then rinsed the salt off and measured the amount of carbon in the MAOM with an instrument called an elemental analyzer. She compared this number to the amount of carbon in the whole soil sample to calculate what percentage of the total soil carbon was attached to minerals.

Featured scientist: Ashley Lang from Indiana University

Flesch–Kincaid Reading Grade Level = 10.8

Additional teacher resources related to this Data Nugget:

Mowing for monarchs, Part I

A monarch caterpillar on a milkweed leaf.
A monarch caterpillar on a milkweed leaf.

With their orange wings outlined with black lines and white dots, monarch butterflies are one of the most recognizable insects in North America. They are known for their seasonal migration when millions of monarch butterflies migrate from the United States and Canada south to Mexico in the fall. Then, in the spring the monarch butterflies migrate back north. Monarch butterflies are pollinators, which means they get their food from the pollen and nectar of flowering plants that they visit. The milkweed plant is one of the most important flowering plants that monarch butterflies depend on.

During the spring and summer months female butterflies will lay their eggs on milkweed plants. Milkweed plays an important role in the monarch butterfly’s life cycle. It is the only plant that monarchs will lay their eggs on. Caterpillars hatch from the butterfly eggs and eat the leaves of the milkweed plant. The milkweed is the only food that monarch caterpillars will eat until they become butterflies.

A problem facing many pollinators, including monarch butterflies, is that their numbers have been going down for several years. Scientists are concerned that we will lose pollinators to extinction if we don’t find solutions to this problem. Doug and Nate are scientists at Michigan State University trying to figure out ways to increase the number of monarch butterflies. They think that they found something that might work. Doug and Nate have learned that if you cut old milkweed plants at certain times of the year, then younger milkweed plants will quickly grow in their place. These new milkweed plants are softer and more tender than the old plants. It appears that monarch butterflies prefer to lay their eggs on the younger plants. It also seems that the monarch caterpillars prefer to eat the younger plants.

Britney and Gabe are two elementary teachers interested in monarch butterfly conservation. They learned about Doug and Nate’s research and wanted to participate in their experiment. The team of four met and designed an experiment that Britney and Gabe could do in open meadows throughout their community.

Britney and Gabe chose ten locations for their experiment. In each location they set aside a milkweed patch that was left alone, which they called the control.  At the same location they set aside another milkweed patch where they mowed the milkweed plants down. After a while, milkweed plants would grow back in the mowed patches. This means they had control patches with old milkweed plants, and treatment patches with young milkweed plants. Gabe and Britney made weekly observations of all the milkweed patches at each location. They recorded the number of monarch eggs in each of the patches. By the end of the summer, they had made 1,693 observations!

Featured scientists: Doug Landis and Nate Haan from Michigan State University and Britney Christensen and Gabe Knowles from Kellogg Biological Station LTER.

Flesch–Kincaid Reading Grade Level = 8.2

Additional resources related to this Data Nugget:

Trees and bushes, home sweet home for warblers

Matt, Sarah, and Hankyu – a team of scientists at Andrews Forest, measuring bird populations.

The activities are as follows:

The birds at a beach are very different from those in the forest. This is because each bird species has their own set of needs that allows them to thrive where they live. Habitats must have the right collection of food to eat, places to shelter and raise young, safety from predators, and the right environmental conditions like temperature and moisture. 

The vast coniferous forests of the Pacific Northwest provide rich and diverse habitat types for birds. These forests are also a large source of timber, meaning they are economically valuable for people. Disturbances from logging and natural events result in a forest that has many different habitat types for birds to choose from. In general, areas of forest that have been harvested more recently will have more understory, such as shrubs and short trees. Old-growth forests usually have higher plant diversity and larger trees. They are also more likely to have downed trees or standing dead trees, which are important for some bird species. Other disturbances like wildfire, wind, large snow events, and forest disease also have large impacts on bird habitat.

At the Andrews Forest Long-Term Ecological Research site in the Cascade Mountains of Oregon, scientists have spent decades studying how the plants, animals, land use, and climate are all connected. In the past, Andrews Forest had experiments manipulating timber harvesting and forest re-growth. This land use history has large impacts on the habitats found in an area. Many teams of scientists work in this forest, each with their own area of research. Piece by piece, like assembling a puzzle, they combine their data to try to understand the whole ecosystem. 

Collecting data on a warbler.

Matt, Sarah, and Hankyu have been collecting long-term data on the number, type, and location of birds in Andrews Forest since 2009. Early each morning, starting in May and continuing until late June, teams of trained scientists hike along transects that go through different forest types. Transects are parallel lines along which data are collected. At specific points along the transect, the team would stop and listen for bird songs and calls for 10 minutes. There are 184 survey locations, and they are visited multiple times each year.

At each sampling point, Matt, Sarah, and Hankyu carefully recorded a count for each bird species that they hear within 100 meters. They then averaged these data for each location along the transect to get an average number for the year. The scientists were also interested in the habitats along the transect, which includes the amount of understory plants and tall trees, two forest characteristics that are very important to birds. They measured the percent cover of understory vegetation, which shows how many bushes and small plants were around. They also measured the size of trees in the area, called basal area. 

Using these data, the research team is looking for patterns that will help them identify which habitat conditions are best for different bird species. With a better understanding of where bird species are successful, they can predict how changes in the forest could affect the number and types of birds living in Andrews Forest and nearby.  

Wilson’s Warblers and Hermit Warblers are two of the many songbirds that these scientists have recorded at Andrews Forests. Wilson’s Warblers are small songbirds that make their nests in the understory of the forests. Therefore, the team predicted that they would see more of Wilson’s Warblers in forest areas with more understory than in forest areas with less understory. Hermit Warblers, on the other hand, build nests in dense foliage of tall coniferous trees and search for spiders and insects in those coniferous trees. The team predicted that the Hermit Warblers would be observed more often in forest plots where there are larger trees.  

Featured scientists: Hankyu Kim, Matt Betts, and Sarah Frey from Oregon State University. Written with Eric Beck from Realms Middle School and Kari O’Connell from Oregon State University.

Flesch–Kincaid Reading Grade Level = 10.5

Additional teacher resource related to this Data Nugget:

Getting to the roots of serpentine soils

Alexandria in the field observing the plants and soil.

When an organism grows in different environments, some traits change to fit the conditions. For example, if a houseplant is grown in the shade, it might grow to stretch out long and thin to reach as much light as possible. If that same plant were grown in the sun, it would grow thicker stems and more leaves that are not spread as far apart. This response to the environment helps plants grow in the different conditions they find themselves in.

Flexibility is especially important when a plant is living in a harsh environment. One such environment is serpentine soils. These soils are created from the weathering of the California state rock, Serpentinite. Serpentine soils have high amounts of toxic heavy metals, do not hold water well, and have low nutrient levels. Low levels of water and nutrients found in serpentine soils limit plant growth. In addition, a high level of heavy metals in serpentine soils can actually poison the plant with magnesium!

Combined, these qualities make it so that most types of plants are not able to grow on serpentine soils. However, some plant species have traits that help them tolerate these harsh conditions. Species that are able to live in serpentine soils, but can also grow in other environments, are called serpentine-indifferent.

Alexandria has been working with serpentine soils since 2011 when she was first introduced to them during an undergraduate research experience with her ecology professor. Alexandria was especially intrigued by this challenging environment and how organisms are able to thrive in it, even with the harsh characteristics.

Dot-seed plantain plants in the growth chamber.

To learn more, she started to read articles about previous research on plants that can only grow in serpentine soils. Alexandria learned that these plant species are generally smaller than closely related species. This was interesting, but she still had questions. She noticed the other experiments had compared plant size in different species, not within one species. She thought the next step would be to look at how plants that are the exact same species would respond to serpentine and non-serpentine soil environments. To explore this question, she would need to use serpentine-indifferent plant species because they can grow in serpentine soils and other soils.

Just as a houseplant grows differently in the sun or shade, plants grown in serpentine and non-serpentine soils might change to survive in their environment. Alexandria thought one of these changes could be happening in the roots. She decided to focus on plant roots because of their importance for plant survival and health. Roots are some of the first organs that many plants produce and anchor them to the ground. Throughout a plant’s life, the roots are essential because they bring nutrients to above-ground organs such as leaves. Because serpentine soils have fewer plant nutrients and are drier than non-serpentine soils, Alexandria thought that plants growing in serpentine soils may not invest as much into large root systems. She predicted plants growing in serpentine soils will have smaller roots than plants growing in non-serpentine soils.

To test her ideas, she studied the effects of soil type on a serpentine-indifferent plant species called Dot-seed plantain. She purchased seeds for her experiment from a local commercial seed company. About 5 seeds were planted in serpentine or non-serpentine soils in a growth chamber where growing conditions were kept the same. After the seedlings emerged, the plants were thinned so that there was one plant per pot. The only difference in the environment was the soil type. This allowed Alexandria to attribute any differences in root length to serpentine soils. At the end of her experiment, she pulled the plants out of the soil and measured the root lengths of plants in both treatments.

Featured scientist: Alexandria Igwe (she/her) from University of Miami

Flesch–Kincaid Reading Grade Level = 8.7

Additional resources related to this Data Nugget:

The topics described in this Data Nugget are similar to the published research in the following article:

  • Igwe, A.N. and Vannette, R.L. 2019. Bacterial communities differ between plant species and soil type, and differentially influence seedling establishment on serpentine soils. Plant Soil: 441: 423-437

There is a short video of Alexandria (Allie) sharing her research on serpentine soils.

There have been several news stories and blog posts about this research:

Mangroves on the move

mangrove in marsh
A black mangrove growing in the saltmarshes of northern Florida.

The activities are as follows:

All plants need nutrients to grow. Sometimes one nutrient is less abundant than others in a particular environment. This is called a limiting nutrient. If the limiting nutrient is given to the plant, the plant will grow in response. For example, if there is plenty of phosphorus, but very little nitrogen, then adding more phosphorus won’t help plants grow, but adding more nitrogen will. 

Saltmarshes are a common habitat along marine coastlines in North America. Saltmarsh plants get nutrients from both the soil and the seawater that comes in with the tides. In these areas, fertilizers from farms and lawns often end up in the water, adding lots of nutrients that become available to coastal plants. These fertilizers may contain the limiting nutrients that plants need, helping them grow faster and more densely.

One day while Candy, a scientist, was out in a saltmarsh in northern Florida, she noticed something that shouldn’t be there. There was a plant out of place. Normally, saltmarshes in that area are full of grasses and other small plants—there are no trees or woody shrubs. But the plant that Candy noticed was a mangrove. Mangroves are woody plants that can live in saltwater, but are usually only found in tropical places that are very warm. Candy thought the closest mangrove was miles away in the warmer southern parts of Florida. What was this little shrub doing so far from home? The more that Candy and her colleague Emily looked, the more mangroves they found in places they had not been before.

Candy and Emily wondered why mangroves were starting to pop up in northern Florida. Previous research has shown nitrogen and phosphorus are often the limiting nutrients in saltmarshes. They thought that fertilizers being washed into the ocean have made nitrogen or phosphorus available for mangroves, allowing them to grow in that area for the first time. So, Candy and Emily designed an experiment to figure out which nutrient was limiting for saltmarsh plants. 

mangrove saltmarsh researchers
Candy (right) and Emily (left) measure the height of a black mangrove growing in the saltmarsh.

For their study, Candy and Emily chose to focus on black mangroves and saltwort plants. These two species are often found growing together, and mangroves have to compete with saltwort. Candy and Emily found a saltmarsh near St. Augustine, Florida, in which they could set up an experiment. They set up 12 plots that contained both black mangrove and saltwort. Each plot had one mangrove plant and multiple smaller saltwort plants. That way, when they added nutrients to the plots they could compare the responses of mangroves with the responses of saltwort. 

To each of the 12 plots they applied one of three conditions: control (no extra nutrients), nitrogen added, and phosphorus added. They dug two holes in each plot and added the nutrients using fertilizers, which slowly released into the nearby soil. In the case of control plots, they dug the holes but put the soil back without adding fertilizer.

Candy and Emily repeated this process every winter for four years. At the end of four years, they measured plant height and percent cover for the two species. Percent (%) cover is a way of measuring how densely a plant grows, and is the percentage of a given area that a plant takes up when viewed from above. Candy and Emily measured percent cover in 1×1 meter plots. The cover for each species could vary from 0 to 100%.

Featured scientists: Candy Feller from the Smithsonian Environmental Research Center and Emily Dangremond from Roosevelt University

Flesch–Kincaid Reading Grade Level = 8.3

A window into a tree’s world

Neil taking a tree core from a pine tree.

The activities are as follows:

According to National Aeronautics and Space Administration (NASA) and the National Oceanic Atmospheric Administration (NOAA), the years 2015-2018 were the warmest recorded on Earth in modern times! And it is only expected to get warmer. Temperatures in the Northeastern U.S. are projected to increase 3.6°F by 2035. Every year the weather is a bit different, and some years there are more extremes with very hot or cold temperatures. Climate gives us a long-term perspective and is the average weather, including temperature and precipitation, over at least 30 years. 

Over thousands of years, tree species living in each part of the world have adapted to their local climate. Trees play an important role in climate change by helping cool the planet – through photosynthesis, they absorb carbon dioxide from the atmosphere and evaporate water into the air. 

Scientists are very interested in learning how trees respond to rapidly warming temperatures. Luckily, trees offer us a window into their lives through their growth rings. Growth rings are found within the trunk, beneath the bark. Each year of growth has two parts that can be seen: a light ring of large cells with thin walls, which grows in the spring; and a dark layer of smaller cells with thick walls that forms later in the summer and fall. Ring thickness is used to study how much the tree has grown over the years. Dendrochronology is the use of these rings to study trees and their environments.

Different tree species have different ranges of temperatures and rainfall in which they grow best. When there are big changes in the environment, tree growth slows down or speeds up in response. Scientists can use these clues in tree’s rings to decipher what climate was like in the past. There is slight variation in how each individual tree responds to temperature and rainfall. Because of this, scientists need to measure growth rings of multiple individuals to observe year-to-year changes in past climate.

Jessie taking a tree core in the winter.

Jessie and Neil are two scientists who use tree rings for climate research. Jessie entered the field of science because she was passionate about climate change. As a research assistant, Neil saw that warming temperatures in Mongolia accelerated growth in very old Siberian pine trees. When he later studied to become a scientist, he wanted to know if trees in the eastern U.S. responded to changes in climate in the same way as the old pine trees in Mongolia. As a result, there were two purposes for Jessie’s and Neil’s work. They wanted to determine if there was a species that could be used to figure out what the climate looked like in the past, and understand how it has changed over time.

Jessie and Neil decided to focus on one particular species of tree – the Atlantic white cedar. Atlantic white cedar grow in swamps and wetlands along the Atlantic and Gulf coasts from southern Maine to northern Florida. Atlantic white cedar trees are useful in dendrochronology studies because they can live for up to 500 years and are naturally resistant to decay, so their well-preserved rings provide a long historical record. Past studies of this species led them to predict that in years when the temperature is warmer, Atlantic white cedar rings will be wider. If this pattern holds, the thickness of Atlantic white cedar rings can be used to look backwards into the past climate of the area. 

To test this prediction, Jessie and Neil needed to look at tree rings from many Atlantic white cedar trees. Jessie used an increment borer, a specialized tool that drills into the center of the tree. This drill removes a wood core with a diameter about equal to that of a straw. She sampled 112 different trees from 8 sites, and counted the rings to find the age of each tree. She then crossdated the wood core samples. Crossdating is the process of comparing the ring patterns from many trees in the same area to see if they tell the same story. Jessie used a microscope linked to a computer to measure the thickness of both the early and late growth to the nearest micrometer (1 micrometer = 0.001 millimeter) for all rings in all 112 trees. From those data she then calculated the average growth of Atlantic white cedar for each year to create an Atlantic white cedargrowth index for the Northeastern U.S. She combined her tree ring data with temperature data from the past 100 years.

Featured scientists: Jessie K Pearl, University of Arizona and Neil Pederson, Harvard University. Written by Elicia Andrews.

Flesch–Kincaid Reading Grade Level = 9.9

Suggestions for inquiry surrounding this Data Nugget:

These videos, demonstrating the science of dendrochronology, could be a great way to spark class discussions:

The carbon stored in mangrove soils

Tall mangroves growing close to the coast.

The activities are as follows:

In the tropics and subtropics, mangroves dominate the coast. There are many different species of mangroves, but they are all share a unique characteristic compared to other trees – they can tolerate having their roots submerged in salt water.

Mangroves are globally important for many reasons. They form dense forested wetlands that protect the coast from erosion and provide critical habitat for many animals. Mangrove forests also help in the fight against climate change. Carbon dioxide is a greenhouse gas that is a main driver of climate change. During photosynthesis, carbon dioxide is absorbed from the atmosphere by the plants in a mangrove forest. When plants die in mangrove forests, decomposition is very slow. The soils are saturated with saltwater and have very little oxygen, which decomposers need to break down plants. Because of this, carbon is stored in the soils for a long time, keeping it out of the atmosphere.

Sean is a scientist studying coastal mangroves in the Florida Everglades. Doing research in the Everglades was a dream opportunity for Sean. He had long been fascinated by the unique plant and animal life in the largest subtropical wetland ecosystem in North America. Mangroves are especially exciting to Sean because they combine marine biology and trees, two of his favorite things! Sean had previously studied freshwater forested wetlands in Virginia, but had always wanted to spend time studying the salty mangrove forests that exist in the Everglades. 

Sean Charles taking soil samples amongst inland short mangroves.

Sean arrived in the Everglades with the goal to learn more about the factors important for mangrove forests’ ability to hold carbon in their soils. Upon his arrival, he noticed a very interesting pattern – the trees were much taller along the coast compared to inland. This is because mangroves that grow close to the coast have access to important nutrients found in ocean waters, like phosphorus. These nutrients allow the trees to grow large and fast. However, living closer to the coast also puts trees at a higher risk of damage from storms, and can lead to soils and dead plants being swept out to sea. 

Sean thought that the combination of these two conditions would influence how much carbon is stored in mangrove soils along the coast and inland. Larger trees are generally more productive than smaller ones, meaning they might contribute more plant material to soils. This led Sean to two possible predictions. The first was that there might be more carbon in soils along the coast because taller mangroves would add more carbon to the soil compared to shorter inland mangroves. However, Sean thought he might also find the opposite pattern because the mangroves along the coast have more disturbance from storms that could release carbon from the soils. 

To test these competing hypothesis, the team of scientists set out into the Everglades in the Biscayne National Park in Homestead, Florida. Their mission was to collect surface soils and measure mangrove tree height. To collect soils, they used soil cores, which are modified cylinders that can be hammered into the soil and then removed with the soil stuck in the tube. Tree height was measured using a clinometer, which is a tool that uses geometry to estimate tree height. They took these measurements along three transects. The first transect was along the coast where trees had an average height of 20 meters. The second transect between the coast and inland wetlands where trees were 10 meters tall, on average. The final transect was inland, with average tree height of only 1 meter tall.  With this experimental design Sean could compare transects at three distances from the coast to look for trends. 

Once Sean was back in the lab, he quantified how much carbon was in the soil samples from each transect by heating the soil in a furnace at 500 degrees Celsius. Heating soils to this temperature causes all organic matter, which has carbon, to combust. Sean measured the weight of the samples before and after the combustion. The difference in weight can be used to calculate how much organic material combusted during the process, which can be used as an estimate of the carbon that was stored in the soil. 

Featured scientist: Sean Charles from Florida International University

Flesch–Kincaid Reading Grade Level = 9.6

Additional teacher resources related to this Data Nugget:

Candid camera: Capturing the secret lives of carnivores

Erik demonstrating how to place a camera trap on a tree on Stockton Island.

The activities are as follows:

Carnivores, animals that eat meat, captivate people’s interest for many reasons – they are charismatic, stealthy, and can be dangerous. Not only are they fascinating, they’re also ecologically important. Carnivores help keep prey populations in balance. They often target old, sick, or weak individuals. This results in more resources for healthier prey. Carnivores also impact prey’s behavior and population sizes, which can have further effects down the food web. For example, if there are too many herbivores, such as deer, the plants in an ecosystem may be eaten to a point where they can’t survive. In this way, carnivores help the plant community by either reducing the number of herbivores in an ecosystem, or changing how or where prey forage for food. 

Despite their importance and our interest in carnivores, they are very hard to monitor. Not only do they have naturally low population sizes because they are at the top of the food chain, they also have a natural ability to hide and blend into their environment. Erik is a wildlife biologist who is interested in taking on this challenge. He wants to learn more about carnivores and what factors affect where they live. Learning more about where carnivores are found can help scientists with conservation efforts.

Erik lives on the southern shore of Lake Superior, the largest lake (by area) in the world. This area is home to the Apostle Islands National Lakeshore – including 21 islands and a 12-mile stretch of the mainland in northern Wisconsin. The Apostle Islands vary in many ways – size, distance from the mainland, highest elevation, historical and current human use, plant communities, and even small differences in climate. The islands are so remote that scientists really didn’t know which carnivores lived on the islands. There is evidence from historical reports that red fox and coyotes lived on some of the islands. More recently, black bears have been observed by visitors as they are hiking or camping. Erik wanted to know which species of carnivores are on each island. As he began to explore methods to document wildlife on the islands, Erik and his collaborators were shocked to discover that American martens, Wisconsin’s only state endangered species, live on some of the islands.

Erik thought a promising step in learning more about what drives carnivores to live on different islands in the archipelago would be to apply what has been learned from islands in the ocean. He referred to a fundamental theory in ecology called the theory of island biogeography. This theory predicts that island size and its distance to the mainland affects the biodiversity, or number of species, found on that island. Specifically, larger islands will have higher carnivore biodiversity because there are more resources and space to support more species than smaller areas. In contrast, islands farther away from the mainland will have lower carnivore biodiversity because more isolated islands are harder for wildlife to reach. 

Erik wanted to test whether the theory of island biogeography also applied to the Apostle Islands. Just like the classic research on island biogeography, some islands are closer to the mainland and they range in size. To inventory where each carnivore is found, Erik and his collaborators and students set up 164 wildlife cameras on 19 of the islands. They made their way out to the remote islands by boat and then bushwhacked their way to the sites, which are not along trails. Often this means they have to push through thick brush and climb over fallen trees, but it’s important to put the cameras in all habitat types, not just those that are enjoyable to walk through. When the research team arrived at a site, they mounted a camera on a tree at waist height. Whenever an animal came into the frame of a camera, a photo was taken and stored on a memory card. The cameras were left on the islands year-round from 2014-2019. Every 6 months Erik and his collaborators would traverse through the thick woods to swap out memory cards and batteries. During this time, they noticed that four of the cameras had not worked properly, so they used the pictures from 160 of the cameras. 

Back at the college, the research team spent countless hours identifying which animals triggered the cameras. The cameras had taken over 200,000 photos over three years including 7,000 wildlife visits. Of these visits, 1,970 were from carnivores! They found 10 different kinds of carnivores, including: American marten, black bear, bobcat, coyote, fisher, gray fox, gray wolf, raccoon, red fox and weasels. After the pictures were processed, Erik used this information to map out which islands the animals were found. For this study, he used species richness, or the number of different species observed on each island, to answer his question. 

Map of the Apostle Islands with the richness, or number of different carnivore species, detected on each island.

Featured scientists: Erik Olson from Northland College, Tim Van Deelen, and Julie Van Stappen from the National Park Service. Support for this lesson was provided by the National Park Service with funding from the Great Lakes Restoration Initiative.

Flesch–Kincaid Reading Grade Level = 11.2

Additional teacher resources related to this Data Nugget:

The study and results described in this Data Nugget have been published:

  • Allen, M.L., Farmer, M.J., Clare, J.J., Olson, E.R., Van Stappen, J., Van Deelen, T.R. 2018. Is there anybody out there? Occupancy of the carnivore guild in a temperate archipelago. Community Ecology 19(3): 272-280.

Citizen science site where students can view and identify animals found in pictures from cameras placed around Wisconsin.

There have been several news articles about this research: