Salty sediments? What bacteria have to say about chloride pollution

Lexi taking water quality measurements at Cedar Creek in Cedarburg, WI.

The activities are as follows:

In snowy climates, salt is applied to roads to help keep them safe during the winter. Over time, salt – in the form of chloride – accumulates in snowbanks. Once temperatures begin to warm in the spring, the snow melts and carries chloride to freshwater lakes, streams, and rivers. This runoff can quickly increase the salt concentration in a body of water. 

In large amounts, salt in the water is harmful to aquatic organisms like fish, frogs, and invertebrates. However, there are some species that thrive with lots of salt. Salt-loving bacteria, also known as halophiles, grow in extreme salty environments, like the ocean. Unlike other bacteria and organisms that cannot tolerate high salinity, halophiles use the salt in the environment for their day-to-day cellular activities. 

Lexi is a freshwater scientist who is interested in learning more about how ecosystems respond to this seasonal surge of chloride in road salts. She thought that there may be enough chloride from the road salt after snowmelt to change the bacteria community living in the sediment. More salt would support halophiles and likely harm the species that cannot tolerate a lot of salt. 

By taking a water sample and measuring the chloride concentration, we can see a snapshot in time of how toxic the levels are to organisms. However, the types of bacteria in sediments take a while to change. Halophiles may be able to tell us a long-term story of how aquatic organisms respond to chloride pollution. Lexi’s main goal is to use the presence of halophiles as a measure of how much chloride has impacted the health and water quality of river or stream ecosystems. This biological tool could also help cities identify areas that may be getting salted beyond what is necessary to keep roads safe.

Lexi expected that there would be few, or maybe no, halophiles in rural areas where there are not many roads. She also thought halophiles would be widespread in urban environments where there are many roads. Because salt impacts the streams year after year, she expected that halophiles would become permanent members of the microbial community and increase in winter and spring. Therefore, she also wanted to track whether halophiles remain in the sediment throughout the year, increasing in numbers when salt levels become high. 

She began to sample sediments from two different rivers in Southeastern Wisconsin. The urban Kinnickinnic River site is in Milwaukee, WI, and the Menomonee River site is in a rural environment outside of the city. She selected these sites because they offer a good comparison. Because there are more roads, and thus saltier snowmelt, the Kinnickinnic site in the city should have higher chloride concentrations than the Menomonee site. 

When visiting her sites throughout the year, Lexi collected multiple water and sediment samples. Every time she visited, she also recorded important water quality characteristics such as pH, conductivity, and temperature of the water. She then brought the samples to the laboratory and analyzed each for its chloride concentration. To measure the quantity of halophiles in the sediment, Lexi used a process where the sediment is shaken in water to separate the bacteria from the sediment and suspend them in the water. Samples from the water were then plated on a growth medium that contained a very high salt concentration. Because the growth medium was so salty, Lexi knew that if bacteria colonies grew on the plate, they would most likely be halophiles because most bacteria do not thrive in salty environments. Lexi counted the number of bacteria colonies that grew on the plates for each sample she had collected.

Featured scientist: Lexi Passante from the University of Wisconsin-Milwaukee

Flesch–Kincaid Reading Grade Level = 12.0

Some videos about Lexi and her research:

Additional teacher resources related to this Data Nugget:

Mowing for monarchs

A monarch caterpillar on a milkweed leaf.
A monarch caterpillar on a milkweed leaf.

With their orange wings outlined with black lines and white dots, monarch butterflies are one of the most recognizable insects in North America. They are known for their seasonal migration when millions of monarch butterflies migrate from the United States and Canada south to Mexico in the fall. Then, in the spring the monarch butterflies migrate back north. Monarch butterflies are pollinators, which means they get their food from the pollen and nectar of flowering plants that they visit. The milkweed plant is one of the most important flowering plants that monarch butterflies depend on.

During the spring and summer months female butterflies will lay their eggs on milkweed plants. Milkweed plays an important role in the monarch butterfly’s life cycle. It is the only plant that monarchs will lay their eggs on. Caterpillars hatch from the butterfly eggs and eat the leaves of the milkweed plant. The milkweed is the only food that monarch caterpillars will eat until they become butterflies.

A problem facing many pollinators, including monarch butterflies, is that their numbers have been going down for several years. Scientists are concerned that we will lose pollinators to extinction if we don’t find solutions to this problem. Doug and Nate are scientists at Michigan State University trying to figure out ways to increase the number of monarch butterflies. They think that they found something that might work. Doug and Nate have learned that if you cut old milkweed plants at certain times of the year, then younger milkweed plants will quickly grow in their place. These new milkweed plants are softer and more tender than the old plants. It appears that monarch butterflies prefer to lay their eggs on the younger plants. It also seems that the monarch caterpillars prefer to eat the younger plants.

Britney and Gabe are two elementary teachers interested in monarch butterfly conservation. They learned about Doug and Nate’s research and wanted to participate in their experiment. The team of four met and designed an experiment that Britney and Gabe could do in open meadows throughout their community.

Britney and Gabe chose ten locations for their experiment. In each location they set aside a milkweed patch that was left alone, which they called the control.  At the same location they set aside another milkweed patch where they mowed the milkweed plants down. After a while, milkweed plants would grow back in the mowed patches. This means they had control patches with old milkweed plants, and treatment patches with young milkweed plants. Gabe and Britney made weekly observations of all the milkweed patches at each location. They recorded the number of monarch eggs in each of the patches. By the end of the summer, they had made 1,693 observations!

Featured scientists: Doug Landis and Nate Haan from Michigan State University and Britney Christensen and Gabe Knowles from Kellogg Biological Station LTER.

Flesch–Kincaid Reading Grade Level = 8.2

Additional resources related to this Data Nugget:

Trees and bushes, home sweet home for warblers

Matt, Sarah, and Hankyu – a team of scientists at Andrews Forest, measuring bird populations.

The activities are as follows:

The birds at a beach are very different from those in the forest. This is because each bird species has their own set of needs that allows them to thrive where they live. Habitats must have the right collection of food to eat, places to shelter and raise young, safety from predators, and the right environmental conditions like temperature and moisture. 

The vast coniferous forests of the Pacific Northwest provide rich and diverse habitat types for birds. These forests are also a large source of timber, meaning they are economically valuable for people. Disturbances from logging and natural events result in a forest that has many different habitat types for birds to choose from. In general, areas of forest that have been harvested more recently will have more understory, such as shrubs and short trees. Old-growth forests usually have higher plant diversity and larger trees. They are also more likely to have downed trees or standing dead trees, which are important for some bird species. Other disturbances like wildfire, wind, large snow events, and forest disease also have large impacts on bird habitat.

At the Andrews Forest Long-Term Ecological Research site in the Cascade Mountains of Oregon, scientists have spent decades studying how the plants, animals, land use, and climate are all connected. In the past, Andrews Forest had experiments manipulating timber harvesting and forest re-growth. This land use history has large impacts on the habitats found in an area. Many teams of scientists work in this forest, each with their own area of research. Piece by piece, like assembling a puzzle, they combine their data to try to understand the whole ecosystem. 

Collecting data on a warbler.

Matt, Sarah, and Hankyu have been collecting long-term data on the number, type, and location of birds in Andrews Forest since 2009. Early each morning, starting in May and continuing until late June, teams of trained scientists hike along transects that go through different forest types. Transects are parallel lines along which data are collected. At specific points along the transect, the team would stop and listen for bird songs and calls for 10 minutes. There are 184 survey locations, and they are visited multiple times each year.

At each sampling point, Matt, Sarah, and Hankyu carefully recorded a count for each bird species that they hear within 100 meters. They then averaged these data for each location along the transect to get an average number for the year. The scientists were also interested in the habitats along the transect, which includes the amount of understory plants and tall trees, two forest characteristics that are very important to birds. They measured the percent cover of understory vegetation, which shows how many bushes and small plants were around. They also measured the size of trees in the area, called basal area. 

Using these data, the research team is looking for patterns that will help them identify which habitat conditions are best for different bird species. With a better understanding of where bird species are successful, they can predict how changes in the forest could affect the number and types of birds living in Andrews Forest and nearby.  

Wilson’s Warblers and Hermit Warblers are two of the many songbirds that these scientists have recorded at Andrews Forests. Wilson’s Warblers are small songbirds that make their nests in the understory of the forests. Therefore, the team predicted that they would see more of Wilson’s Warblers in forest areas with more understory than in forest areas with less understory. Hermit Warblers, on the other hand, build nests in dense foliage of tall coniferous trees and search for spiders and insects in those coniferous trees. The team predicted that the Hermit Warblers would be observed more often in forest plots where there are larger trees.  

Featured scientists: Hankyu Kim, Matt Betts, and Sarah Frey from Oregon State University. Written with Eric Beck from Realms Middle School and Kari O’Connell from Oregon State University.

Flesch–Kincaid Reading Grade Level = 10.5

Additional teacher resource related to this Data Nugget:

Mangroves on the move

mangrove in marsh
A black mangrove growing in the saltmarshes of northern Florida.

The activities are as follows:

All plants need nutrients to grow. Sometimes one nutrient is less abundant than others in a particular environment. This is called a limiting nutrient. If the limiting nutrient is given to the plant, the plant will grow in response. For example, if there is plenty of phosphorus, but very little nitrogen, then adding more phosphorus won’t help plants grow, but adding more nitrogen will. 

Saltmarshes are a common habitat along marine coastlines in North America. Saltmarsh plants get nutrients from both the soil and the seawater that comes in with the tides. In these areas, fertilizers from farms and lawns often end up in the water, adding lots of nutrients that become available to coastal plants. These fertilizers may contain the limiting nutrients that plants need, helping them grow faster and more densely.

One day while Candy, a scientist, was out in a saltmarsh in northern Florida, she noticed something that shouldn’t be there. There was a plant out of place. Normally, saltmarshes in that area are full of grasses and other small plants—there are no trees or woody shrubs. But the plant that Candy noticed was a mangrove. Mangroves are woody plants that can live in saltwater, but are usually only found in tropical places that are very warm. Candy thought the closest mangrove was miles away in the warmer southern parts of Florida. What was this little shrub doing so far from home? The more that Candy and her colleague Emily looked, the more mangroves they found in places they had not been before.

Candy and Emily wondered why mangroves were starting to pop up in northern Florida. Previous research has shown nitrogen and phosphorus are often the limiting nutrients in saltmarshes. They thought that fertilizers being washed into the ocean have made nitrogen or phosphorus available for mangroves, allowing them to grow in that area for the first time. So, Candy and Emily designed an experiment to figure out which nutrient was limiting for saltmarsh plants. 

mangrove saltmarsh researchers
Candy (right) and Emily (left) measure the height of a black mangrove growing in the saltmarsh.

For their study, Candy and Emily chose to focus on black mangroves and saltwort plants. These two species are often found growing together, and mangroves have to compete with saltwort. Candy and Emily found a saltmarsh near St. Augustine, Florida, in which they could set up an experiment. They set up 12 plots that contained both black mangrove and saltwort. Each plot had one mangrove plant and multiple smaller saltwort plants. That way, when they added nutrients to the plots they could compare the responses of mangroves with the responses of saltwort. 

To each of the 12 plots they applied one of three conditions: control (no extra nutrients), nitrogen added, and phosphorus added. They dug two holes in each plot and added the nutrients using fertilizers, which slowly released into the nearby soil. In the case of control plots, they dug the holes but put the soil back without adding fertilizer.

Candy and Emily repeated this process every winter for four years. At the end of four years, they measured plant height and percent cover for the two species. Percent (%) cover is a way of measuring how densely a plant grows, and is the percentage of a given area that a plant takes up when viewed from above. Candy and Emily measured percent cover in 1×1 meter plots. The cover for each species could vary from 0 to 100%.

Featured scientists: Candy Feller from the Smithsonian Environmental Research Center and Emily Dangremond from Roosevelt University

Flesch–Kincaid Reading Grade Level = 8.3

The carbon stored in mangrove soils

Tall mangroves growing close to the coast.

The activities are as follows:

In the tropics and subtropics, mangroves dominate the coast. There are many different species of mangroves, but they are all share a unique characteristic compared to other trees – they can tolerate having their roots submerged in salt water.

Mangroves are globally important for many reasons. They form dense forested wetlands that protect the coast from erosion and provide critical habitat for many animals. Mangrove forests also help in the fight against climate change. Carbon dioxide is a greenhouse gas that is a main driver of climate change. During photosynthesis, carbon dioxide is absorbed from the atmosphere by the plants in a mangrove forest. When plants die in mangrove forests, decomposition is very slow. The soils are saturated with saltwater and have very little oxygen, which decomposers need to break down plants. Because of this, carbon is stored in the soils for a long time, keeping it out of the atmosphere.

Sean is a scientist studying coastal mangroves in the Florida Everglades. Doing research in the Everglades was a dream opportunity for Sean. He had long been fascinated by the unique plant and animal life in the largest subtropical wetland ecosystem in North America. Mangroves are especially exciting to Sean because they combine marine biology and trees, two of his favorite things! Sean had previously studied freshwater forested wetlands in Virginia, but had always wanted to spend time studying the salty mangrove forests that exist in the Everglades. 

Sean Charles taking soil samples amongst inland short mangroves.

Sean arrived in the Everglades with the goal to learn more about the factors important for mangrove forests’ ability to hold carbon in their soils. Upon his arrival, he noticed a very interesting pattern – the trees were much taller along the coast compared to inland. This is because mangroves that grow close to the coast have access to important nutrients found in ocean waters, like phosphorus. These nutrients allow the trees to grow large and fast. However, living closer to the coast also puts trees at a higher risk of damage from storms, and can lead to soils and dead plants being swept out to sea. 

Sean thought that the combination of these two conditions would influence how much carbon is stored in mangrove soils along the coast and inland. Larger trees are generally more productive than smaller ones, meaning they might contribute more plant material to soils. This led Sean to two possible predictions. The first was that there might be more carbon in soils along the coast because taller mangroves would add more carbon to the soil compared to shorter inland mangroves. However, Sean thought he might also find the opposite pattern because the mangroves along the coast have more disturbance from storms that could release carbon from the soils. 

To test these competing hypothesis, the team of scientists set out into the Everglades in the Biscayne National Park in Homestead, Florida. Their mission was to collect surface soils and measure mangrove tree height. To collect soils, they used soil cores, which are modified cylinders that can be hammered into the soil and then removed with the soil stuck in the tube. Tree height was measured using a clinometer, which is a tool that uses geometry to estimate tree height. They took these measurements along three transects. The first transect was along the coast where trees had an average height of 20 meters. The second transect between the coast and inland wetlands where trees were 10 meters tall, on average. The final transect was inland, with average tree height of only 1 meter tall.  With this experimental design Sean could compare transects at three distances from the coast to look for trends. 

Once Sean was back in the lab, he quantified how much carbon was in the soil samples from each transect by heating the soil in a furnace at 500 degrees Celsius. Heating soils to this temperature causes all organic matter, which has carbon, to combust. Sean measured the weight of the samples before and after the combustion. The difference in weight can be used to calculate how much organic material combusted during the process, which can be used as an estimate of the carbon that was stored in the soil. 

Featured scientist: Sean Charles from Florida International University

Flesch–Kincaid Reading Grade Level = 9.6

Additional teacher resources related to this Data Nugget:

Hold on for your life! Part II

In Part I the data showed that, after the hurricanes, anole lizards had on average smaller bodies, shorter legs, and larger toe pads. The patterns were clear and consistent across the two islands, indicating that these traits are adaptations shaped by natural selection from hurricanes. At this point, however, Colin was still not convinced because he was unable to directly observe the lizards during the hurricane.

Still shot of lizard clinging to an experimental perch in hurricane-force winds. Wind speed meter is displaying in miles per hour

The activities are as follows:

Colin was unable to stay on Pine Cay and Water Cay during the hurricanes and directly observe the lizards. To be more confident in his explanation, Colin needed to find out how lizards behave in hurricane-force winds. He thought there were two options for what they might do. First, he thought they might get down from the branch and hide in tree roots and cracks. Alternatively, they might hold onto branches and ride out the storm. If they tried to hold on in high winds, it would make sense that traits like the length of their limbs or the size of their toepads would be important for their survival. However, if they hid in roots or cracks, these traits might not be adaptations after all.

To see how the lizards behaved, Colin needed to design a safe experiment that would simulate hurricane-force winds. He bought the strongest leaf blower he could find, set it up in his hotel room on Pine Cay, and videotaped 40 lizards as they were hit with high winds. Colin first set up this experiment to observe behavior, but he ended up learning not only that, but a lot about how the traits of the lizards interacted with high winds.

To begin the experiment, Colin placed the anoles on a perch. He slowly ramped up the wind speed on the leaf blower until the lizards climbed down or they were blown, unharmed, into a safety net. He recorded videos of each trial and took pictures. 

Featured scientist: Colin Donihue from Harvard University

Written with: Bob Kuhn and Elizabeth Schultheis

Flesch–Kincaid Reading Grade Level = 8.4

Additional teacher resources related to this Data Nugget:

To engage students in this activity, show the following video in class. This video gives some information on the experiment and Colin’s research.

Hold on for your life! Part I

Anolis scriptus, the Turks and Caicos anole, on Pine Cay.

The activities are as follows:

On the Caribbean islands of Turks and Caicos, there lives a small brown anole lizard named Anolis scriptus. The populations on two small islands, called Pine Cay and Water Cay, have been studied by researchers from Harvard University and the Paris Natural History Museum for many years. In 2017, Colin, one of the scientists, went to these islands to set up a long-term study on the effect of rats on anoles and other lizards on the islands. Unbeknownst to him, though, a storm was brewing to the south of the islands, and it was about to change the entire trajectory of his research.

While he was collecting data, Hurricane Irma was developing into a massive category 5 hurricane. Eventually it became clear that it would travel straight over these small islands. Colin knew that this might be the last time he would see the two small populations of lizards ever again because they could get wiped out in the storm. It dawned on him that this might be a serendipitous moment. After the storm, he could evaluate whether lizards could possibly survive a severe hurricane. He was also interested in whether certain traits could increase survival. Colin and his colleagues measured the lizards and vowed to come back after the hurricane to see if they were still there. They measured both male and female lizards and recorded trait values including their body size, femur length, and the toepad area on their forelimbs and hindlimbs.

Colin was not sure whether the lizards would survive. If they did, Colin formed two alternative hypotheses about what he might see. First, he thought lizards that survived would just be a random subset of the population and simply those that got lucky and survived by chance. Alternatively, he thought that survival might not be random, and some lizards might be better suited to hanging on for their lives in high winds. There might be traits that help lizards survive hurricanes, called adaptations. He made predictions off this second hypothesis and expected that survivors would be those individuals with large adhesive pads on their fingers and toes and extra-long legs – both traits that would help them grab tight to a branch and make it through the storm. This would mean the hurricanes could be agents of natural selection.

Not only did Hurricane Irma ravage the islands that year, but weeks later Hurricane Maria also paid a visit. Upon his return to Pine Cay and Water Cay after the hurricanes, Colin was shocked to see there were still anoles on the islands! He took the measurements a second time. He then compared his two datasets from before and after the hurricanes to see if the average trait values changed.

Featured scientist: Colin Donihue from Harvard University

Written with: Bob Kuhn and Elizabeth Schultheis

Flesch–Kincaid Reading Grade Level = 9.9

Additional teacher resources related to this Data Nugget:

To engage students in this activity, show the following video in class. This video gives some information on the experiment and Colin’s research. For Part I stop the video at minute 1:30.

All washed up? The effect of floods on cutthroat trout

The activities are as follows:

Mack Creek, a healthy stream located within the old growth forests in Oregon. It has a diversity of habitats because of various rocks and logs. This creates diverse habitats for juvenile and adult trout.

Streams are tough places to live. Fish living in streams have to survive droughts, floods, debris flows, falling trees, and cold and warm temperatures. In Oregon, cutthroat trout make streams their home. Cutthroat trout are sensitive to disturbances in the stream, such as pollution and sediment. This means that when trout are present it is a good sign that the stream is healthy.

Floods are very common disturbances in streams. During floods, water in the stream flows very fast. This extra movement picks up sediment from the bottom of the stream and suspends it in the water. When sediment is floating in the water it makes it harder for fish to see and breathe, limiting how much food they can find. Floods may also affect fish reproduction. If floods happen right after fish breed and eggs hatch, young fish that cannot swim strongly may not survive. Although floods can be dangerous for fish, they are also very important for creating new habitat. Floods expand the stream, making it wider and adding more space. Moving water also adds large boulders, small rocks, and logs into the stream. These items add to the different types of habitat available. 

A cutthroat trout. It is momentarily unhappy, because it is not in its natural, cold Pacific Northwest stream habitat.

Ivan and Stan are two scientists who are interested in whether floods have a large impact on the survival of young cutthroat trout. They were worried because cutthroat trout reproduce during the spring, towards the end of the winter flood season. During this time juvenile trout,less than one year old, are not good swimmers. The fast water from floods makes it harder for them to survive. After a year, juvenile trout become mature adults.These two age groups live in different habitats. Adult trout live in pools near the center of streams. Juvenile trout prefer habitats at the edges of streams that have things like rocks and logs where they can hide from predators. Also, water at the edges moves more slowly, making it easier to swim. In addition, by staying near the stream edge they can avoid getting eaten by the adults in stream pools.

Ivan and Stan work at the H.J. Andrews Long Term Ecological Research site. They wanted to know what happens to cutthroat trout after winter floods. Major floods occur every 35-50 years, meaning that Ivan and Stan would need a lot of data. Fortunately for their research they were able to find what they needed since scientists have been collecting data at the site since 1987!

To study how floods affect trout populations, Ivan and Stan used data from Mack Creek, one of the streams within their site. They decided to look at the population size of both juvenile and adult trout since they occupy such different parts of the stream. For each year of data they had, Ivan and Stan compared the juvenile and adult trout population data, measured as the number of trout, with stream discharge, or a measure of how fast water is flowing in the stream. Stream discharge is higher after flooding events. Stream discharge data for Mack Creek is collected during the winter when floods are most likely to occur. Fish population size is measured during the following summer each year. Since flooding can make life difficult for trout, they expected trout populations to decrease after major flooding events.

Featured scientists: Ivan Arismendi and Stan Gregory from Oregon State University. Written by: Leilagh Boyle.

Flesch–Kincaid Reading Grade Level = 7.5

Additional teacher resource related to this Data Nugget:

Tree-killing beetles

A Colorado forest impacted by a mountain pine beetle outbreak. Notice the dead trees mixed with live trees. Forests like this with dead trees from mountain pine beetle outbreaks cover millions of acres across western North America.

The activities are as follows:

A beetle the size of a grain of rice seems insignificant compared to a vast forest. However, during outbreaks the number of mountain pine beetles can skyrocket, leading to the death of many trees. The beetles bore their way through tree bark and introduce blue stain fungi. The blue stain fungi kills the tree by blocking water movement. Recent outbreaks of mountain pine beetles killed millions of acres of lodgepole pine trees across western North America. Widespread tree death caused by mountain pine beetles can impact human safety, wildfires, nearby streamflow, and habitat for wildlife.

Mountain pine beetles are native to western North America and outbreak cycles are a natural process in these forests. However, the climate and forest conditions have been more favorable for mountain pine beetles during recent outbreaks than in the past. These conditions caused more severe outbreaks than those seen before.

Logs from mountain pine beetle killed lodgepole pine trees. The blue stain fungi is visible around the edge of each log. Mountain pine beetles introduce this fungus to the tree.

When Tony moved to Colorado, he drove through the mountains eager to see beautiful forests. The forest he saw was not the green forest he expected. Many of the trees were dead! Upon closer examination he realized that some forests had fewer dead trees than others. This caused him to wonder why certain areas were greatly impacted by the mountain pine beetles while others had fewer dead trees. Tony later got a job as a field technician for Colorado State University. During this job he measured trees in mountain forests. He carefully observed the forest and looked for patterns of where trees seemed to be dead and where they were alive.

Tony thought that the size of the trees in the forest might be related to whether they were attacked and killed by beetles. A larger tree might be easier for a beetle to find and might be a better source of food.To test this idea, Tony and a team of scientists visited many forests in northern Colorado. At each site they recorded the diameter of each tree’s trunk, which is a measure of the size of the tree. They also recorded the tree species and whether it was alive or dead. They then used these values to calculate the average tree size and the percent of trees killed for each site.

Featured scientist: Tony Vorster from Colorado State University

Flesch–Kincaid Reading Grade Level = 8.3

There is one scientific paper associated with the data in this Data Nugget. The citation and PDF of the paper is below:

Students can complete this Data Nugget along with Tony! In this video, Tony provides more background on how he became interested in doing research, how he collects his data, and details on how to construct graphs.

The case of the collapsing soil

An area in the Florida Everglades where strange soil collapse has been observed.

The activities are as follows:

As winds blow through the large expanses of grass in the Florida Everglades, it looks like flowing water. This “river of grass” is home to a wide diversity of plants and animals, including both the American Alligator and the American Crocodile. The Everglades ecosystem is the largest sub-tropical wetland in North America. One third of Floridians rely on the Everglades for water. Unfortunately, this iconic wetland is threatened by rising sea levels caused by climate change. Sea level rise is caused by higher global temperatures leading to thermal expansion of water, land-ice melt, and changes in ocean currents.

With rising seas, one important feature of the Florida Everglades may change. There are currently large amounts of carbon stored in the wetland’s muddy soils. By holding carbon in the mud, coastal wetlands are able to help in the fight against climate change. However, under stressful conditions like being submersed in sea water, soil microbes increase respiration. During respiration, carbon stored in the soil is released as carbon dioxide (CO2), a greenhouse gas. As sea level rises, soil microbes are predicted to release stored carbon and contribute to the greenhouse effect, making climate change worse.

Shelby collecting soil samples from areas where the soil has collapsed in the Everglades.

Shelby and John are ecologists who work in southern Florida. John became fascinated with the Everglades during his first visit 10 years ago and has been studying this unique ecosystem ever since. Shelby is interested in learning how climate change will affect the environment, and the Everglades is a great place to start! They are both very concerned with protecting the Everglades and other wetlands. Recently when John, Shelby, and their fellow scientists were out working in the Everglades they noticed something very strange. It looked like areas of the wetland were collapsing! What could be the cause of this strange event?

John and Shelby thought it might have something to do loss of carbon due to sea level rise. They wanted to test whether the collapsing soils were the result of increased microbial respiration, leading to loss of carbon from the soil, due to stressful conditions from sea level rise. They set out to test two particular aspects of sea water that might be stressful to microbes – salt and phosphorus.

Phosphorus is found in sea water and is a nutrient essential for life. However, too much phosphorus can lead to over enriched soils and change the way that microbes use carbon. Sea water also contains salt, which can stress soil microbes and kill plants when there is too much. Previous research has shown that both salt and phosphorus exposure on their own increase respiration rates of soil microbes.

A photo of the experimental setup. Each container has a different level of salt and phosphorus concentration.

To test their hypotheses, a team of ecologists in John’s lab developed an experiment using soils from the Everglades. They collected soil from areas where the soil had collapsed and brought it into the lab. These soils had the microbes from the Everglades in them. Once in the lab, they put their soil and microbes into small vials and exposed them to 5 different concentrations of salt, and 5 different concentrations of phosphorus. The experiment crossed each level of the two treatments. This means they had soil in every possible combination of treatments – some with high salt and low phosphorus, some in low salt and high phosphorus, and so on. Their experiment ran for 5 weeks. At the end of the 5 weeks they measured the amount of COreleased from the soils.

Featured scientists: John Kominoski and Shelby Servais from Florida International University. Written by Shelby, John, and Teresa Casal.

Flesch–Kincaid Reading Grade Level = 9.2