Marvelous mud

mud

You can tell that the mud in this picture is high in organic matter because it is dark brown and mucky (in real life you’d be able to smell it, too!)

The activities are as follows:

The goopy, mucky, often stinky mud at the bottom of a wetland or lake is a very important part of the ecosystem. Wetland mud is more than just wet dirt. Underwater microbes do not have all the oxygen they need to break plant tissue down quickly. Because of this, stuff decomposes, or breaks down, slower than in dry soil. This makes mud dark brown from all the plant tissues that build up, called organic matter.

A successful core! You can see that the tube has mud, as well as some of the water from the wetland that was on top of the mud.

A successful core! You can see that the tube has mud, as well as some of the water from the wetland that was on top of the mud.

As a graduate student, Lauren became fascinated with mud and its weird properties. She wanted to know what all the organic matter in mud means for wetlands. By talking with other members of her lab and reading scientific papers, she learned that sometimes mud acts like fertilizer for a wetland. Nutrients, such as phosphorus, tend to build up. She wondered if the organic matter in the mud was the source of all this phosphorus. She predicted that wetlands with more organic matter would have more phosphorus. If the data supports her hypothesis, it means that organic matter is very important for wetlands, because nutrients are needed for algae and plants to grow.

Although most mud is high in organic matter and nutrients, not all mud is the same. There is natural variation in the amount of organic matter and nutrients from place to place. Even within the same location mud can be very different in spots. Lauren used this variability to test her ideas. She measured organic matter and phosphorus in mud from 16 locations (four lakes, five ponds, and seven wetlands). She took cores that allowed her to sample mud deep into the ground. She then brought her cores back to the lab and measured organic matter and phosphorus levels in her samples.

Featured scientist: Lauren Kinsman-Costello from Kent State University

Flesch–Kincaid Reading Grade Level = 7.8

More photos associated with this research can be found here. There is one scientific paper associated with the data in this Data Nugget. The citation and PDF of the paper is below:

Kinsman-Costello LE, J O’Brien, SK Hamilton (2014) Re-flooding a Historically Drained Wetland Leads to Rapid Sediment Phosphorus Release. Ecosystems 17:641-656

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

4

Speak Your Mind

*