Search Results for: lter
LTER Data Nuggets
The following Data Nuggets are written by LTER scientists and created using LTER Data.
To learn more about the ongoing collaboration between Data Nuggets and the LTER, check out our blog posts, “Data Nuggets: small activities with big impacts for students” and “LTER Data Nuggets: Breathing new life into long-term data“. If you have any questions about the research in an LTER Data Nugget, or want help accessing original datasets, please contact us or the Education and Outreach Coordinator (EOC) for that site.
Title | LTER Site | EOC & Website | Content Level | Summary | |
---|---|---|---|---|---|
![]() | All washed up? The effect of floods on cutthroat trout | Andrews Forest LTER | Kari O'Connell | 2 | Floods are very common disturbances in streams. If floods happen right after fish breed and eggs hatch, young fish that cannot swim strongly may not survive. Although floods can be dangerous for fish, they are also very important for creating new habitat. Cutthroat trout are a species of fish living in Mack Creek, which experiences occasional floods. Trout breed in the early spring, right at the peak of flooding, so scientists are collecting long-term data on this species. Will floods hurt trout populations or help? |
![]() | Trees and bushes, home sweet home for warblers | Andrews Forest LTER | Kari O'Connell | 4 | The vast coniferous forests of the Pacific Northwest provide surprisingly rich and diverse habitat types for birds. Andrews Forest is a long-term ecological research site where there have been manipulations of timber harvest and forest re-growth. This land use history has large impacts on the bird habitats found in an area. Each year since 2009, scientists have gone out and measured bird populations and habitat types. Two species of warbler, with very different habitat preferences, can give insight into how birds are responding to these disturbances. |
![]() | Streams as sensors: Arctic watersheds as indicators of change | Arctic LTER | Amanda Morrison | 3 | As the world warms from climate change, the Alaskan Arctic is heating up. This is causing permafrost, or the frozen underground layer of rock and ice, to melt. When permafrost melts, plant material that has been stored for thousands of years begins to decay, releasing carbon and nitrogen from the system. Ecologists can act like “ecosystem accountants” measuring the balance of material that goes into and out of these systems. |
![]() | Limit by limit: Nutrients control algal growth in Arctic streams | Arctic LTER | Amanda Morrison | 3 | Aquatic algae, a type of microbe that live in the water, need to take in nutrients from their surroundings for growth. Two important nutrients for algal growth are nitrogen (N) and phosphorous (P). Climate change may be altering which nutrients are limiting to algae, changing food webs in the ecosystem. |
![]() | Benthic buddies | Beaufort Lagoon Ecosystems LTER | Katie Gavenus | 2 | Arctic lagoons support a surprisingly wide range of marine organisms! Marine worms, snails, and clams live in the muddy sediment of these lagoons. Having a rich variety of benthic animals in these habitats supports fish, which migrate along the shoreline and eat these animals once the ice has left. Ken, Danny, and Kaylie are interested in learning more about how the extreme seasons of the High Arctic affect the marine life that lives there. |
![]() | The birds of Hubbard Brook, Part I | Hubbard Brook Experimental Forest | Sarah Garlick & Amey Bailey | 2 | Avian ecologists at the Hubbard Brook Experimental Forest have been monitoring bird populations for over 50 years. The data collected during this time is one of the longest bird studies ever conducted! What can we learn from this long-term data set? Are bird populations remaining stable over time? |
![]() | The birds of Hubbard Brook, Part II | Hubbard Brook Experimental Forest | Sarah Garlick & Amey Bailey | 3 | Hubbard Brook was heavily logged and disturbed in the early 1900s. When logging ended in 1915, trees began to grow back. The forest then went through secondary succession, which refers to the naturally occurring changes in forest structure that happen as a forest ages after it has been cut or otherwise disturbed. Can these changes in habitat availability, due to succession, explain why the number of birds are declining at Hubbard Brook? Are all bird species responding succession in the same way? |
![]() | When whale I sea you again? | Palmer Station Antarctica LTER | Janice McDonnell | 4 | People have hunted whales for over 5,000 years for their meat, oil, and blubber. Today, as populations are struggling to recover from whaling, humpback whales are faced with additional challenges due to climate change. Their main food source is krill, which are small crustaceans that live under sea ice. As sea ice disappears, the number of krill is getting lower and lower. Humpback whale population recovery may be limited because their main food source is threatened by ongoing ocean warming. |
![]() | Lizards, iguanas, and snakes! Oh my! | Central Arizona–Phoenix LTER | Lisa Herrmann | 3 | People have dramatically changed the natural riparian habitat found along rivers and streams. In many urban areas today, these riparian habitats are being rehabilitated with the hope of bringing back native species, such as reptiles. Reptiles, including snakes and lizards, are extremely important to monitor as they play important roles in ecosystems. Are rehabilitation efforts in Phoenix successful at restoring reptile diversity and abundance? |
![]() | Bringing back the Trumpeter Swan | Kellogg Biological Station LTER & Kellogg Bird Sanctuary | Liz Schultheis & Kara Haas | 3 | Trumpeter swans are the biggest native waterfowl species in North America. At one time they were found across North America, but by 1935 there were only 69 known individuals in the continental U.S.! In the 1980s, many biologists came together to create a Trumpeter Swan reintroduction plan. Since then the North American Trumpeter Swan survey has been conducted to measure swan populations and determine whether this species is recovering. |
![]() | Growing energy: comparing biofuel crop biomass | Kellogg Biological Station LTER & University Wisconsin-Madison GLBRC | Liz Schultheis & Kara Haas | 3 | Corn is one of the best crops for producing biomass for fossil fuels, however it is an annual and needs very fertile soil. To grow corn, farmers add a lot of chemical fertilizers and pesticides to their fields. Other crops, like switchgrass, prairie, poplar trees, and Miscanthus grass are perennials and require fewer fertilizers and pesticides to grow. If perennials can produce high levels of biomass with low inputs, perhaps they could produce more biomass than corn under certain low nutrient conditions. |
![]() | Fertilizing biofuels may cause release of greenhouse gasses | Kellogg Biological Station LTER | Liz Schultheis & Kara Haas | 3 | One way to reduce the amount of greenhouse gases we release into the atmosphere could be to grow our fuel instead of drilling for it. Unlike fossil fuels that can only release CO2, biofuels remove CO2 from the atmosphere as they grow and photosynthesize, potentially balancing the CO2 released when they are burned for fuel. However, the plants we grow for biofuels don’t necessarily absorb all greenhouse gas that is released during the process of growing them on farms and converting them into fuels. |
![]() | The ground has gas! | Kellogg Biological Station LTER | Liz Schultheis & Kara Haas | 3 | Nitrous oxide and carbon dioxide are responsible for much of the warming of the global average temperature that is causing climate change. Sometimes soils give off, or emit, these greenhouse gases into the earth’s atmosphere, adding to climate change. Currently scientists figuring out what causes differences in how much of each type of greenhouse gas soils emit. |
![]() | Mowing for monarchs, Part I | Kellogg Biological Station LTER | Liz Schultheis & Kara Haas | 2 | During the spring and summer months, monarch butterflies lay their eggs on milkweed plants. Milkweed plays an important role in the monarch butterfly’s life cycle. When milkweed is cut at certain times of the year new shoots grow, which are softer and easier for caterpillars to eat. Scientists set out to see if mowing milkweed plants could help boost struggling monarch populations. |
![]() | Mowing for monarchs, Part II | Kellogg Biological Station LTER | Liz Schultheis & Kara Haas | 2 | When the scientists mowed down milkweed plants for their experiment, they changed more than the age of the milkweed plants. They also removed other plant species in the background community. Perhaps the patterns they were seeing were driven not by milkweed age, but by eliminating predators from the patches they mowed. |
![]() | Blinking out? | Kellogg Biological Station LTER | Liz Schultheis & Kara Haas | 2 | Many people have fond memories of watching fireflies blink across open fields and collecting them in jars as children. This is one of the reasons why fireflies are a beloved insect species. However, there is concern that their populations are in decline. Scientists turned to the longest-running study of fireflies known to science to see if this is the case! |
![]() | Invasion Meltdown: will climate change make invasions even worse? | Kellogg Biological Station LTER | Liz Schultheis & Kara Haas | 3 | Humans are changing the earth in many ways, including adding greenhouse gasses to the atmosphere, which contributes to climate change, and introducing species around the globe, which can lead to invasive species. Scientists wanted to know, could climate change actually help invasive species? Because invasive species have already survived transport from one habitat to another, they may be species that are better able to handle change, such as temperature changes. |
![]() | Springing forward | Kellogg Biological Station LTER | Liz Schultheis & Kara Haas | 1 & 3 | What does climate change mean for flowering plants that rely on temperature cues to determine when it is time to flower? Scientists who study phenology, or the timing if life-history events in plants and animals, predict that with warming temperatures, plants will produce their flowers earlier and earlier each year. |
![]() | Cheaters in nature – when is a mutualism not a mutualism? | Kellogg Biological Station LTER | Liz Schultheis & Kara Haas | 4 | Mutualisms are a special type of relationship in nature where two species work together and both benefit. This cooperation should lead to each partner species doing better when the other is around – without their mutualist partner, the species will have a harder time acquiring resources. But what happens when one partner cheats and takes more than it gives? |
![]() | Fair traders or freeloaders? | Kellogg Biological Station LTER | Liz Schultheis & Kara Haas | 3 | One example of a mutualism is the relationship between a type of bacteria, rhizobia, and plants like peas, beans, soybeans, and clover. Rhizobia live in bumps on the plant roots, where they trade their nitrogen for sugar from the plants. Rhizobia turn nitrogen from the air into a form that plants can use. Under some conditions, this mutualism could break down, for example, if one of the traded resources is very abundant in the environment. |
![]() | The mystery of Plum Island Marsh | Plum Island Ecosystems LTER & The TIDE Project | David Moon | 3 | Salt marshes are among the most productive coastal ecosystems, and support a diversity of plants and animals. Algae and marsh plants feed many invertebrates, like snails and crabs, which are then eaten by larger fish and birds. In Plum Island, scientists have been fertilizing and studying salt marsh creeks to see how added nutrients affect the system. They noticed that fish populations seemed to be crashing in the fertilized creeks, while the mudflats were covered in mudsnails. Could there be a link? |
![]() | Urbanization and estuary eutrophication | Plum Island Ecosystems LTER | David Moon | 4 | Estuaries are very productive habitats found where freshwater rivers meet the ocean. They are important natural filters for water and protect the coast during storms. A high diversity of plants, fish, shellfish and birds call estuaries home. Estuaries are threatened by eutrophication, or the process by which an ecosystem becomes more productive when excess nutrients are added to the system. Parts of the Plum Island Estuary in MA may be more at risk from eutrophication due to their proximity to urban areas. |
![]() | Does sea level rise harm saltmarsh sparrows? | Plum Island Ecosystems LTER | David Moon | 3 | For the last 100 years, sea levels around the globe have increased dramatically. Salt marshes grow right at sea level and are therefore very sensitive to sea level rise. Saltmarsh sparrows rely completely on salt marshes for feeding and nesting, and therefore their numbers are expected to decline as sea levels rise and they lose nesting sites. Will this threatened bird species decline over time as sea levels rise? |
![]() | Keeping up with the sea level | Plum Island Ecosystems LTER | David Moon | 3 | Salt marshes are very important habitats for many species and protect the coast from erosion. Unfortunately, rising sea levels due to climate change are threatening these important ecosystems. As sea levels rise, the elevation of the marsh soil must rise as well so the plants have ground high enough to keep them above sea level. Basically, it is like a race between the marsh floor and sea level to see who can stay on top! |
![]() | Is your salt marsh in the zone? | Plum Island Ecosystems LTER | David Moon | 3 | Beginning in the 1980s, scientist James began measuring the growth of marsh grasses. He discovered that their growth was higher in some years and lower in others and that there was a long-term trend of growth going up over time. Marsh grasses grow around mean sea level, or the average elevation between high and low tides. Are the grasses responding to mean sea level changing year-to-year, and increasing as our oceans warm and water levels rise due to climate change? |
![]() | Marsh makeover | Plum Island Ecosystems LTER | David Moon | 3 | The muddy soils in salt marshes store a lot of carbon, compared to terrestrial dry soils. This is because they are low in oxygen needed for decomposition. For this reason they play a key role in the carbon cycle and climate change. If humans disturb marshes, reducing plant diversity and biomass, are they also disturbing the marsh's ability to sequester carbon? If a marsh is restored, can the carbon holding capacity also be brought back to previous levels? |
![]() | Invasive reeds in the salt marsh | Plum Island Ecosystems LTER | David Moon | 2 | Phragmites australis is an invasive reed that is taking over saltwater marshes of New England, outcompeting other plants that serve as food and homes for marsh animals. Once Phragmites has invaded, it is sometimes the only plant species left, called a monoculture. Phragmites does best where humans have disturbed a marsh, and scientists were curious why that might be. They thought that perhaps it was caused by changing salinity, or amount of salt in the water, after a marsh is disturbed. |
![]() | Can a salt marsh recover after restoration? | Plum Island Ecosystems LTER | David Moon | 2 | Before restoration began, it was clear the Saratoga Creek salt marsh was in trouble. Invasive Phragmites plants covered large areas of the marsh, crowding out native plants and animals. Human activity was thought to be the culprit – storm drains were dumping freshwater into the marsh, lowering salinity. In 1999 a restoration took place to divert freshwater away from the marsh in an attempt to reduce Phragmites numbers. Did it work? |
![]() | Make way for mummichogs | Plum Island Ecosystems LTER | David Moon | 4 | Mummichogs are small fish that live in tidal marshes all along the US Atlantic coast. Because they are so widespread and can be found in most streams, they are a valuable tool for scientists looking to compare the health of different marshes. The absence of mummichogs in a salt marsh is a sign that it is highly damaged. Students collected data on mummichog numbers before and after a marsh restoration. Did the restoration successfully bring back mummichogs to the marsh? |
![]() | The case of the collapsing soil | Florida Coastal Everglades LTER | Nick Oehm | 4 | The Everglades are a unique and vital ecosystem threatened by rising sea levels due to climate change. Recently scientists have observed in some areas of the wetland the soils are collapsing. What is causing this strange phenomena? Sea level rise might be stressing microbes, causing carbon to be lost to the atmosphere through increased respiration. |
![]() | The carbon stored in mangrove soils | Florida Coastal Everglades LTER | Nick Oehm | 2 | Mangroves are globally important for many reasons. They form dense forested wetlands that protect the coast from erosion and provide critical habitat for many animals. Mangrove forests also help in the fight against climate change by storing carbon in their soils. The balance between how much carbon is added to the soils and how much is released might be dependent on a variety of factors, including tree size and amount of disturbance to the site. |
![]() | Are forests helping in the fight against climate change? | Harvard Forest LTER | Clarisse Hart & Katharine Hinkle | 3 | In the 1990s, scientists began to wonder what role forests were having in the exchange of carbon in and out of the atmosphere. Were forests overall storing carbon (carbon sink), or releasing it (carbon source)? To test this, they built large metal towers that stand taller than the forest trees around them and use sensors to measure the speed, direction, and CO2 concentration of each puff of air that passes by. These long term measurements can tell us whether forests help in the fight against climate change. |
![]() | A window into a tree’s world | Harvard Forest LTER | Clarisse Hart & Katharine Hinkle | 2 | Scientists are very interested in learning how trees respond to rapidly warming temperatures. Luckily, trees offer us a window into their lives through their growth rings. Growth rings are found within the trunk, beneath the bark. These rings provide a long historical record, which can be used to study how trees respond to climate change. |
![]() | Love that dirty water | Harvard Forest LTER | Clarisse Hart & Katharine Hinkle | 4 | As green spaces are lost to make room for homes and businesses, there are fewer forests and wetlands to filter our drinking water. A team of scientists used the New England Landscapes Future Explorer to study this challenge for the Merrimack River, an important river for the people of New England. |
![]() | Fertilizer and fire change microbes in prairie soil | Konza Prairie LTER | Jill Haukos | 4 | Prairies grow where three environmental conditions come together – a variable climate, frequent fires, and large herbivores roaming the landscape. However, prairies are experiencing many changes. For example, people now work to prevent fires, which allows forest species take over. In addition, land previously covered in prairie is now being used for agriculture. How do these changes affect the plants, animals, and microbial communities that inhabit prairies? |
![]() | Does more rain make healthy bison babies? | Konza Prairie LTER | Jill Haukos | 2 | The North American Bison is an important species for the prairie ecosystem. Bison affect the health of the prairie in many ways, and are also affected by the prairie as well. Each year when calves are born, scientists go out and determine their health by weighing them. This long-term dataset can be used to figure out whether environmental conditions from the previous year affect the health of the calves born in the current year. |
![]() | Spiders under the influence | Baltimore Ecosystem Study LTER | Bess Caplan & Alan Berkowitz | 2 | People use pharmaceutical drugs, personal care products, and other chemicals on a daily basis. Often, they get washed down our drains and end up in local waterways. Chris knew that many types of spiders live near streams and are exposed to toxins through the prey they eat. Chris wanted to compare effects of the chemicals on spiders in rural and urban environments. By comparing spider webs in these two habitats, they could see how different the webs are and infer how many chemicals are in the waterways. |
LTER Data Nuggets: Breathing new life into long-term data
The original blog post can be found on the KBS LTER website here.
Each year the KBS LTER program awards graduate students summer fellowships. Here Elizabeth Schultheis and Melissa Kjevik, now both postdoctoral researchers with Michigan State University, describe the project their summer fellowship supported.
Today it is apparent that students and the public continue to struggle when faced with data and its interpretation. When asked to make sense of data taught in their science classrooms, gathered during classroom inquiry projects, or found in the news, students are unable to connect quantitative information to explanations of the way the world works. Without exposure and practice, a large dataset or complicated graph can seem insurmountable. In collaboration with K-12 teachers, the Kellogg Biological Station (KBS) GK-12 program, BEACON, and the LTER, we created Data Nuggets to help students overcome roadblocks when working with and interpreting data.
Data Nuggets are targeted classroom activities focused on developing quantitative skills for K-16 students. They are created from recent and ongoing research, bringing cutting edge science into the classroom and helping scientists share their work with broad audiences. The standard format of each Data Nugget provides background information about a scientist and their research, along with how they became interested in their research questions and system that they study. Each Data Nugget includes a real dataset for students to graph, interpret, and use to construct an explanation.

Scientist Mélanie Banville searching for reptiles in the Central Arizona-Phoenix LTER. Her and Heather Bateman’s Data Nugget, “Lizards, Iguanas, and Snakes! Oh My!”
LTER Data Nuggets
The collaboration between Data Nuggets and the LTER is a mutually beneficial fit. LTER scientists help strengthen the Data Nuggets project by increasing the diversity of data and research available to students. In turn, Data Nuggets provide an avenue for LTER scientists to share their work and findings with a broad audience of students, teachers, and fellow scientists. Sharing research findings with the non-science public is an important part of the science process, yet is often one of the most challenging to achieve. With broader impacts a factor in most grants, finding effective methods of communication and transmission is key. Researchers who create Data Nuggets must dig deep to uncover the core messages of their research and think back to the big question that got them passionate about the research in the first place. Also, by creating a Data Nugget and practicing communicating research to a 6th grader, scientists can rest assured that at their next conference they’ll be better able to discuss their work with collaborators and those outside their field!

Researcher Sam Bond taking Sediment Elevation Table measurements in Plum Island Ecosystems Long Term Ecological Research site. For more information on this research, check out Anne Giblin’s Data Nugget, “Keeping Up With the Sea Level”.
Most importantly, a great outcome of using LTER data to create Data Nuggets is that teachers and students will directly benefit from additional resources that highlight the importance of data and science in an authentic context. Activities aiming to improve quantitative skills are more effective if they’re grounded in real world situations that students can relate to. Connecting science to a student’s experiences and local ecosystems makes the content more accessible, particularly for culturally and linguistically diverse students. These connections also allow students to envision a place for themselves in science. To assist with place-based learning, each Data Nugget is categorized and searchable by the location where the study occurred, allowing teachers to connect data to their students’ environment. In this way, LTER Data Nuggets have the potential to increase interest and engagement with science and data, in both students and the public.

Robert Buchsbaum, from Mass Audubon, preparing his team for a morning of salt marsh bird surveys. Find out more about his research on the endangered Saltmarsh Sparrow in his Data Nugget, “Does Sea Level Rise Harm Saltmarsh Sparrows?”
Working with LTER Scientists and Educators
This past summer (2015), we received support from the LTER Summer Fellowship program. This support allowed us to continue our work with Data Nuggets, and to strengthen their connection to the vast stores of data available through the LTER, including the KBS site and the other 24 sites in the LTER Network. While the LTER Network has conducted over three decades of amazing research, spanning diverse ecosystems and taxa, LTER education and outreach specialists are still finding creative new ways to share this important research with the public. Data Nuggets can breath new life into long-term
datasets, opening them up to the public and future scientists. These funds were used to support training workshops at the LTER All Scientists Meeting (ASM) in Estes Park, CO in August and at KBS in July. These two workshops supported early and late career scientists (graduate students, postdocs, faculty, and REUs) and many LTER education and outreach specialists looking to broaden the impact of the LTER’s research and improve their communication skills. In addition, at the LTER ASM we participated in a poster session to reach out to those who were unable to attend our workshop. Our outreach efforts strengthened the connection between Data Nuggets and the LTER, and resulted in the creation of nine (and counting!) new Data Nuggets based on LTER research. Additionally, in August, we spoke to the teachers working with the KBS K-12 Partnership, connecting them with the LTER Data Nuggets and the vast pool of LTER data, freely available online.
When reflecting back on this summer, it was so great to work with a diversity of LTER scientists across the network. We enjoyed learning new science stories and are very happy to now include coastal, urban riparian, and other ecosystems in the Data Nuggets collection. Please feel free to contact Melissa or Elizabeth if you would like more information or to get started creating your own Data Nugget! For a list of all the Data Nuggets created by LTER scientists and outreach leaders, click here!
Increase your broader impacts with Data Nuggets! LTER ASM Meeting 2015
Sharing research findings with the non-science public is an important part of the science process, yet is often one of the most challenging to achieve. With broader impacts a factor in most grants, finding effective methods of transmission is key. Data Nuggets, a GK-12 initiative from the Kellogg Biological Station is a practical, high-impact solution to this conundrum. If you need to increase broader impacts for your research and want to further develop your communication skills, come to our hands-on workshop and create a Data Nugget based on your research!
Data Nuggets are targeted classroom activities that emphasize developing quantitative skills for K-16 students. They are created from recent and ongoing research, bringing cutting edge science into the classroom and helping scientists share their work with broad audiences. The standard format of each Data Nugget provides a brief background to a researcher and their study system along with a dataset from their research. Students are challenged to answer a scientific question, using the dataset to support their claim, and are guided through the construction of graphs to facilitate data interpretation.
We are currently seeking to add to our collection of Data Nuggets to showcase science done at LTER sites across the country. See examples of LTER Data Nuggets and learn more about our project by clicking on our LTER tag. During the workshop we will walk you through our templates for experimental and observational data, and help you identify a proper dataset, scientific question, and hypothesis for students of many ages. In order to finish a Data Nugget within the allotted time, participants must come to the workshop with a dataset already selected and analyzed.
- Workshop info can be found here.
- Organizers: Mary Spivey, Elizabeth Schultheis, and Melissa Kjelvik
- Monday, August 31st – Working Group Session II
Benthic buddies
The activities are as follows:
- Teacher Guide
- Student activity, Graph Type A, Level 2
- Student activity, Graph Type B, Level 2
- Student activity, Graph Type C, Level 2
- Grading Rubric
Lagoons are areas along the coast where a shallow pocket of sea water is separated from the ocean most of the time. During some events, like high tides, the ocean water meets back up with the lagoon. Coastal lagoons are found all over the world – even in the most northern region of Alaska, called the High Arctic!
These High Arctic lagoons go through many extreme changes each season. In April, ice completely covers the surface. The mud at the bottom of the shorelines is frozen solid. In June, the ice begins to break up and the muddy bottoms of the lagoons begin to thaw. The melting ice adds freshwater to the lagoons and lowers the salt levels. In August, lagoon temperatures continue to rise until there is only open water and soft mushy sediment.
You would think these harsh conditions would make High Arctic lagoons not suitable to live in. However, these lagoons support a surprisingly wide range of marine organisms! Marine worms, snails, and clams live in the muddy sediment of these lagoons. This habitat is also called the bottom, or benthic, environment. Having a rich variety of benthic animals in these habitats supports fish, which migrate along the shoreline and eat these animals once the ice has left. And people who live in the Arctic depend on fishing for their food.
Ken, Danny, and Kaylie are a team of scientists from Texas interested in learning more about how the extreme seasons of the High Arctic affect the marine life that lives there. They want to know whether the total number of benthic species changes with the seasons. Or does the benthic community of worms, snails, and clams stay constant throughout the year regardless of ice, freezing temperatures, and large changes in salt levels? The science team thought that the extreme winter conditions in the Arctic lagoons cause a die-off each year, so there would be fewer species found at that time. Once the ice melts each year, benthic animals likely migrate back into the lagoons from deeper waters and the number of species would increase again.
Ken, Danny, and Kaylie had many discussions about how they could answer their questions. They decided the best approach would be to travel to Alaska to take samples of the benthic animals. To capture the changes in lagoon living conditions, they would need to collect samples during the three distinct seasons.
The science team chose to sample Elson Lagoon because it is in the village of Utqiaġvik, Alaska and much easier to reach than other Arctic lagoons. They visited three times. First, in April, during the ice-covered time, again in June when the ice was breaking up, and a final time in summer when the water was warmer. In April, they used a hollow ice drill to collect a core sample of the frozen sediment beneath the ice. In June and August, they deployed a Ponar instrument into the water, which snaps shut when it reaches the lagoon bottom to grab a sample. Each time they visited the lagoon, they collected two sediment samples.
Back in the lab, they rinsed the samples with seawater to remove the sediment and reveal the benthic animals. The team then sorted and identified the species present. They recorded the total number of different species, or species richness, found in each sample.
Featured scientists: Ken Dunton, Daniel Fraser, and Kaylie Plumb
from the University of Texas Marine Science Institute
Written by: Maria McDonel from Flour Bluff and Corpus Christi Schools
Flesch–Kincaid Reading Grade Level = 8.9
Additional teacher resources related to this Data Nugget include:
- Two short videos that you can play to introduce students to Arctic lagoons and the research that is done there:
- A news article about the research.
- More information on the Beufort Lagoon Long-term Ecological Research site and who to contact.
Does more rain make healthy bison babies?
The activities are as follows:
- Teacher Guide
- Student activity, Graph Type A, Level 2
- Student activity, Graph Type B, Level 2
- Student activity, Graph Type C, Level 2
- Grading Rubric
The North American Bison is an important species for the prairie ecosystem. They are a keystone species, which means their presence in the ecosystem affects many other species around them. For example, they roll on the ground, creating wallows. Those wallows can fill up with water and create a mini marsh ecosystem, complete with aquatic plants and animals. They also eat certain kinds of food – especially prairie grasses. What bison don’t eat are wildflowers, so where bison graze there will be more flowers present than in the areas avoided by bison. This affects many insects, especially the pollinators that are attracted to the prairie wildflowers that are abundant in in the bison area.
Not only do bison affect their environment, but they are also affected by it. Because bison eat grass, they often move around because the tastiest meals might be scattered in different areas of the prairie. Also, as bison graze down the grass in one area they will leave it in search of a new place to find food. The amount of food available is largely dependent upon the amount of rain the area has received. The prairie ecosystem is a large complex puzzle with rain and bison being the main factors affecting life there.
The Konza Prairie Biological Station in central Kansas has a herd of 300 bison. Scientists study how the bison affect the prairie, and how the prairie affects the bison. Jeff started at Konza as a student, and today he is the bison herd manager. As herd manager, if is Jeff’s duty to track the health of the herd, as well as the prairie.
One of the main environmental factors that affect the prairie’s health is rainfall. The more rain that falls, the more plants that grow on the prairie. This also means that in wetter years there is more food for bison to eat. Heavier bison survive winters better, and then may have more energy saved up to have babies in the following spring. Jeff wanted to know if a wet summer would actually lead to healthier bison babies, called calves, the following year.
Jeff and other scientists collect data on the bison herd every year, including the bison calves. Every October, all the bison in the Konza Prairie herd are rounded up and weighed. Since most of the bison calves are born in April or May, they are about 6 months old by the time are weighed. The older and the healthier the calf is, the more it weighs. Very young calves, including those born late in the year, may be small and light, and because of this they may have a difficult time surviving the winter.
Jeff also collects data on how much rain and snow, called precipitation, the prairie receives every year. Precipitation is measured daily at the biological station and then averaged for each year. Precipitation is important because it plays a direct role in how well the plants grow.
Featured scientist: Jeff Taylor from the Konza Prairie Biological Station
Written by: Jill Haukos, Seton Bachle, and Jen Spearie
Flesch–Kincaid Reading Grade Level = 8.7
Additional teacher resources related to this Data Nugget include:
- The full dataset for bison herd data is available online! The purpose of this study is to monitor long-term changes in individual animal weight. The datasets include an annual summary of the bison herd structure, end-of-season weights of individual animals, and maternal parentage of individual bison. The data in this activity came from the bison weight dataset (CBH012).
- For more information on calf weight, check out the LTER Book Series book, The Autumn Calf, by Jill Haukos.
Mowing for monarchs, Part II
In Part I you explored data that showed monarchs prefer to lay their eggs on young milkweeds that have been mowed, compared to older milkweed plants. But, is milkweed age the only factor that was changed when Britney and Gabe mowed patches of milkweeds? You will now examine whether mowing also affected the presence of monarch predators.

The activities are as follows:
- Teacher Guide
- Student activity, Graph Type A, Level 2
- Student activity, Graph Type B, Level 2
- Student activity, Graph Type C, Level 2
- PowerPoint of images
- Data extension activities
- Grading Rubric
The bright orange color of monarch butterflies signals to their enemies that they are poisonous. This is a warning that they do not make a tasty meal. Predators, like birds and spiders, that try to eat monarch butterflies usually become sick. Many people think that monarch butterflies have no enemies because they are poisonous. But, in fact they do have a lot of predators, especially when they are young.
Monarchs become poisonous from the food they eat. Adult monarchs lay their eggs on milkweed plants, which have poisonous sap. When the eggs hatch, the caterpillars chomp on the leaves. Young caterpillars are less poisonous because they haven’t eaten much milkweed yet. And monarch eggs are not poisonous at all to predators.
Britney and Gabe met with their friends, Doug and Nate, who are scientists. Doug and Nate thought that Britney and Gabe’s experiment might have changed more than just the age of the milkweed plants in the patches they mowed. By mowing their field sites they were also cutting down the plants in the rest of the community. These plants provide habitat for predators, so mowing all of the plants would affect the predators as well. These ideas led to another potential explanation for the results Britney and Gabe saw in their data. Because all plants were cut in the mowed patches, there was nowhere for monarch predators to hang out. Britney and Gabe came up with an alternative hypothesis that perhaps monarch butterflies were choosing to lay their eggs on young milkweed plants because there were fewer predators nearby. To test this new idea, Britney and Gabe went back to their experimental site and started collecting data on the presence of predators in addition to egg number. Remember that in each location, they had a control patch, which was left alone, and a treatment patch that they mowed. The control patches had older milkweed plants and a full set of plants in the community. The mowed patches had young milkweed plants with short, chopped plants nearby. For the whole summer, they went out weekly to all of the patches. They counted the number of predators found on the milkweed plants so they could compare the mowed and unmowed patches.

Featured scientists: Doug Landis and Nate Haan from Michigan State University and Britney Christensen and Gabe Knowles from Kellogg Biological Station LTER.
Flesch–Kincaid Reading Grade Level = 8.2
Additional resources related to this Data Nugget:
Mowing for monarchs, Part I
The activities are as follows:
- Teacher Guide
- Student activity, Graph Type A, Level 2
- Student activity, Graph Type B, Level 2
- Student activity, Graph Type C, Level 2
- PowerPoint of images
- Data extension activities
- Grading Rubric
With their orange wings outlined with black lines and white dots, monarch butterflies are one of the most recognizable insects in North America. They are known for their seasonal migration when millions of monarch butterflies migrate from the United States and Canada south to Mexico in the fall. Then, in the spring the monarch butterflies migrate back north. Monarch butterflies are pollinators, which means they get their food from the pollen and nectar of flowering plants that they visit. The milkweed plant is one of the most important flowering plants that monarch butterflies depend on.
During the spring and summer months female butterflies will lay their eggs on milkweed plants. Milkweed plays an important role in the monarch butterfly’s life cycle. It is the only plant that monarchs will lay their eggs on. Caterpillars hatch from the butterfly eggs and eat the leaves of the milkweed plant. The milkweed is the only food that monarch caterpillars will eat until they become butterflies.
A problem facing many pollinators, including monarch butterflies, is that their numbers have been going down for several years. Scientists are concerned that we will lose pollinators to extinction if we don’t find solutions to this problem. Doug and Nate are scientists at Michigan State University trying to figure out ways to increase the number of monarch butterflies. They think that they found something that might work. Doug and Nate have learned that if you cut old milkweed plants at certain times of the year, then younger milkweed plants will quickly grow in their place. These new milkweed plants are softer and more tender than the old plants. It appears that monarch butterflies prefer to lay their eggs on the younger plants. It also seems that the monarch caterpillars prefer to eat the younger plants.
Britney and Gabe are two elementary teachers interested in monarch butterfly conservation. They learned about Doug and Nate’s research and wanted to participate in their experiment. The team of four met and designed an experiment that Britney and Gabe could do in open meadows throughout their community.
Britney and Gabe chose ten locations for their experiment. In each location they set aside a milkweed patch that was left alone, which they called the control. At the same location they set aside another milkweed patch where they mowed the milkweed plants down. After a while, milkweed plants would grow back in the mowed patches. This means they had control patches with old milkweed plants, and treatment patches with young milkweed plants. Gabe and Britney made weekly observations of all the milkweed patches at each location. They recorded the number of monarch eggs in each of the patches. By the end of the summer, they had made 1,693 observations!
Featured scientists: Doug Landis and Nate Haan from Michigan State University and Britney Christensen and Gabe Knowles from Kellogg Biological Station LTER.
Flesch–Kincaid Reading Grade Level = 8.2
Additional resources related to this Data Nugget:
- This research is part of the ReGrow Milkweed citizen science project. To learn more, visit their website or follow them on Twitter at @ReGrowMilkweed.
- Britney, one of the scientists in this study, wrote a blog post about her experience in the NSF LTER RET Program (National Science Foundation’s Research Experience for Teachers) working with Doug Landis.
- Learn about how this group of scientists responded to the COVID-19 pandemic to pivot to a virtual citizen science program in this blog post.
- A news article discussing declining monarch populations and the causes that might be contributing to this trend.
Trees and bushes, home sweet home for warblers
The activities are as follows:
- Teacher Guide
- Student activity, Graph Type A, Level 4
- Student activity, Graph Type B, Level 4
- Student activity, Graph Type C, Level 4
- PowerPoint of images
- Grading Rubric
The birds at a beach are very different from those in the forest. This is because each bird species has their own set of needs that allows them to thrive where they live. Habitats must have the right collection of food to eat, places to shelter and raise young, safety from predators, and the right environmental conditions like temperature and moisture.
The vast coniferous forests of the Pacific Northwest provide rich and diverse habitat types for birds. These forests are also a large source of timber, meaning they are economically valuable for people. Disturbances from logging and natural events result in a forest that has many different habitat types for birds to choose from. In general, areas of forest that have been harvested more recently will have more understory, such as shrubs and short trees. Old-growth forests usually have higher plant diversity and larger trees. They are also more likely to have downed trees or standing dead trees, which are important for some bird species. Other disturbances like wildfire, wind, large snow events, and forest disease also have large impacts on bird habitat.
At the Andrews Forest Long-Term Ecological Research site in the Cascade Mountains of Oregon, scientists have spent decades studying how the plants, animals, land use, and climate are all connected. In the past, Andrews Forest had experiments manipulating timber harvesting and forest re-growth. This land use history has large impacts on the habitats found in an area. Many teams of scientists work in this forest, each with their own area of research. Piece by piece, like assembling a puzzle, they combine their data to try to understand the whole ecosystem.
Matt, Sarah, and Hankyu have been collecting long-term data on the number, type, and location of birds in Andrews Forest since 2009. Early each morning, starting in May and continuing until late June, teams of trained scientists hike along transects that go through different forest types. Transects are parallel lines along which data are collected. At specific points along the transect, the team would stop and listen for bird songs and calls for 10 minutes. There are 184 survey locations, and they are visited multiple times each year.
At each sampling point, Matt, Sarah, and Hankyu carefully recorded a count for each bird species that they hear within 100 meters. They then averaged these data for each location along the transect to get an average number for the year. The scientists were also interested in the habitats along the transect, which includes the amount of understory plants and tall trees, two forest characteristics that are very important to birds. They measured the percent cover of understory vegetation, which shows how many bushes and small plants were around. They also measured the size of trees in the area, called basal area.
Using these data, the research team is looking for patterns that will help them identify which habitat conditions are best for different bird species. With a better understanding of where bird species are successful, they can predict how changes in the forest could affect the number and types of birds living in Andrews Forest and nearby.
Wilson’s Warblers and Hermit Warblers are two of the many songbirds that these scientists have recorded at Andrews Forests. Wilson’s Warblers are small songbirds that make their nests in the understory of the forests. Therefore, the team predicted that they would see more of Wilson’s Warblers in forest areas with more understory than in forest areas with less understory. Hermit Warblers, on the other hand, build nests in dense foliage of tall coniferous trees and search for spiders and insects in those coniferous trees. The team predicted that the Hermit Warblers would be observed more often in forest plots where there are larger trees.
Featured scientists: Hankyu Kim, Matt Betts, and Sarah Frey from Oregon State University. Written with Eric Beck from Realms Middle School and Kari O’Connell from Oregon State University.
Flesch–Kincaid Reading Grade Level = 10.5
Additional teacher resource related to this Data Nugget:
- A slideshow of the images is available for this activity.
- To access more data, and learn more about the H.J. Andrews Long Term Ecological Research site, check out their website.
Love that dirty water

The activities are as follows:
- Teacher Guide
- Student activity, Graph Type A, Level 4
- Student activity, Graph Type B, Level 4
- Student activity, Graph Type C, Level 4
- PowerPoint of images
- Land Acknowledgement
- Grading Rubric
Forests, wetlands, and other green spaces are natural filters for water; water is cleaned as it is used by plants and travels through soils. As green spaces are lost to make room for homes and businesses, ecosystems are less able to provide this service. Without natural filtration from green spaces, humans must build expensive water treatment systems or risk drinking contaminated water.
Impervious surfaces, like roads, buildings, and parking lots, do not allow water to pass through. When it rains or snows on an impervious surface, water cannot soak into soil or be used by plants. Instead, it quickly flows into nearby streams and rivers. If too much water runs off too quickly, it overwhelms local sewer systems, getting into rivers before it can be filtered. This dirty water may carry human waste and toxic materials.
Impervious surfaces have become a major problem for both the health of river ecosystems, and the health of people who depend on them as a clean source of drinking water. How land is used in a watershed, or the network of land and rivers that flow to a single point as they empty out into the ocean, is an issue of great concern.
Jonathan is a scientist studying land use. He became interested in science after traveling around the country and working as a wilderness ranger and wildland firefighter. At the Harvard Forest, members of his lab study how land use decisions affect the environment. They used computer simulations to create maps of what New England’s landscape could look like under different possible futures. Their web-tool is called the New England Landscapes Futures Explorer. Johnathan’s lab works with Drew, a civil and environmental engineer who loves biking and hiking. Drew and his lab at Smith College are interested in the relationship between land use and water. Together, Jonathan and Drew’s labs teamed up to study how future increases in impervious surfaces from new development could affect water quality in New England.
A team of scientists decided to use the web-tool to study the Merrimack River. The Merrimack is an important river for New England, and serves as a water source for more than 500,000 people in the region. It begins in New Hampshire, and flows through 117 miles of forests, farmland, and cities before emptying into the Atlantic Ocean.
To study the Merrimack, the scientists used their web-tool and data from two nearby similar watersheds to make predictions for the Merrimack. Combining research like this gives scientists, government organizations, and the public valuable information that can be used to help make decisions about how land should be used in the future.
Jonathan’s lab used their future land use predictions to estimate the percentage of impervious surface area in the Merrimack River watershed for three future scenarios in the year 2060.
- Recent Trends: This scenario takes the historical rates and patterns of land use change from 1990-2010 and projects them through 2060. This scenario imagines a future where we maintain current land use practices.
- Low Development: This scenario explores a future where the people of New England shift toward a lifestyle focused on “living local” and valuing reliance on local resources. This increases the urgency to protect local landscapes, including conservation of green spaces. Rates of development are slightly lower than the Recent Trends scenario.
- High Development: This scenario explores a future with a rapid increase in human population in New England, because climate change has made life in many other places more difficult. Rates of development are much higher than the Recent Trends scenario.
Drew’s team collected data from two watersheds adjacent to the Merrimack river (see map) and calculated the annual maximum daily flow, or the highest level that the river in each watershed would be expected to reach each day. Higher flows likely mean more human waste and toxic materials are getting into the river. These watersheds are similar to the Merrimack in some ways, but different in others. It is up to you to justify which watershed you think is most similar, and use the annual maximum daily flow data from that watershed to make your prediction for the Merrimack.
Featured scientists: Jonathan Thompson from Harvard University and Drew Guswa from Smith College. Written by Tara Goodhue and Joshua Plisinski. Supporting content by Amanda Suzzi.
Flesch–Kincaid Reading Grade Level = 11.3
Additional teacher resource related to this Data Nugget:
- Students can explore the New England Landscapes Futures Explorer online here!