Search Results for: lter

Data Nugget Research Study 2017-2018

Below are links to all the materials from the research study, Scientific Data in Schools: Measuring the efficacy of an innovative approach to integrating quantitative reasoning in secondary scienceIf you have any questions, our contact information is linked below!

Schultheis, E.H., M.K. Kjelvik, J. Snowden, L. Mead, and M.A.M. Stuhlsatz (2022) Effects of Data Nuggets on student interest in STEM careers, self-efficacy in data tasks, and ability to construct scientific explanationsInternational Journal of Science and Mathematics Education.

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

Deadly windows

A white-throated sparrow caught during the experiment. You can see the band on it’s leg, used to make sure they did not record the same bird more than once.

The activities are as follows:

Glass makes for a great windowpane because you can see right through it. However, the fact that windows are see-through makes them very dangerous for birds. Have you ever accidentally run into a glass door or been confused by a tall mirror in a restaurant? Just like people, birds can mistake a see-through window or a mirrored pane for an opening to fly through or a place to get food and will accidentally fly into them. These window collisions can hurt the bird or even kill it. Window collisions kill nearly one billion birds every year!

Urban areas, with a lot of houses and stores, have a lot of windows. Resident birds that live in the area may get to know these buildings well and may learn to avoid the windows. However, not all the birds in an area live there year-round. There are also migrant birds that fly through urban areas during their seasonal migrations. In the fall, for example, migrant birds use gardens and parks in urban areas to rest along their journeys to their winter southern homes. During the fall migration, people have noticed that it seems like more birds fly into windows. This may be because migrant birds, especially the ones born that summer, are not familiar with the local buildings. While looking for food and places to sleep, migrant birds might have more trouble identifying windows and fly into them more often. However, it could also be that there are simply more window collisions in the fall because there are more birds in the area when migrant and resident birds co-occur in urban areas.

Researchers identify the species of each bird caught in one of the nets used in the study. They then place a metal bracelet on one leg so they will know if they catch the same bird again.

Natasha was visiting a friend who worked at a zoo when he told her about a problem they were having. For a few weeks in the fall, they would find dead birds under the windows, more than they would during the rest of the year. He wanted to figure out a way to prevent birds from hitting the exhibit windows. Natasha became interested in learning whether migrant birds were more likely to fly into windows than resident birds or if the number of window collisions only increase in the fall because there are a lot of birds around. To do this she would have to count the total number of birds in the area and also the total number of birds that were killed in window collisions, as well as identify the types of birds. To count the total number of birds in the area, Natasha hung nets that were about the same height as windows. When the birds got caught in the nets, Natasha could count and identify them. These data could then be used to calculate the proportion of migrants and residents flying at window-height. She put 10 nets up once a week for four hours, over the course of three months, and checked them every 15 minutes for any birds that got caught.

Researcher identifying a yellow-rumped warbler, one of the birds captured in the net as part of the study.

Then, she also checked under the windows in the same area to see what birds were killed from window collisions. She checked the windows every morning and evening for the three months of the study. Different species of birds are migratory or resident in the area where Natasha did her study. Each bird caught in nets was examined to identify its to species using its feathers, which would tell her whether the bird was a migrant or a resident. The same was done for birds found dead below windows.

If window collisions are really more dangerous for migrants, she predicted that a higher proportion of migrants would fly into windows than were caught in the nets. But, if window collisions were in the same proportion as the birds caught in the nets, she would have evidence that windows were just as dangerous for resident birds as for migrants.

Featured scientist: Natasha Hagemeyer from Old Dominion University

Flesch–Kincaid Reading Grade Level = 8.7

There is one scientific paper associated with the data in this Data Nugget. The citation and PDF of the paper is below:

To engage students with the lesson before they begin, or after the lesson to help them develop their own independent questions for the system, you can share the following videos:

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

Marsh makeover

A saltmarsh near Boston, MA being restored after it was degraded by human activity.

The activities are as follows:

Salt marshes are diverse and productive ecosystems, and are found where the land meets the sea. They contain very unique plant species that are able to tolerate flooding during high tide and greater salt levels found in seawater. Healthy salt marshes are filled with many species of native grasses. These grasses provide food and nesting grounds for lots of important animals. They also help remove pollution from the land before it reaches the sea. The grass roots protect the shoreline from erosion during powerful storms. Sadly today, humans have disturbed most of the salt marshes around the world. As salt marshes are disturbed, native plant biodiversity, and the services that marshes provide to us, are lost.

A very important role of salt marshes is that they are able to store carbon, and the amount they store is called their carbon storage capacity. Carbon is stored in marshes in the form of both dead and living plant tissue, called biomass. Marsh grasses photosynthesize, taking carbon dioxide out of the atmosphere and storing it in plant biomass. This biomass then falls into the mud and the carbon is stored there for a very long time. Salt marshes have waterlogged muddy soils that are low in oxygen. Because of the lack of oxygen, decomposition of dead plant tissue is much slower than it is in land habitats where oxygen is plentiful. All of this stored carbon can help lower the levels of carbon dioxide in our atmosphere. This means that healthy and diverse salt marshes are very important to help fight climate change.

However, as humans change the health of salt marshes, we may also change the amount of carbon being stored. As humans disturb marshes, they may lower the biodiversity and fewer plant species can grow in the area. The less plant species growing in the marsh, the less biomass there will be. Without biomass falling into the mud and getting trapped where there is little oxygen, the carbon storage capacity of disturbed marshes may go down.

Jennifer, working alongside students, to collect biomass data for a restored saltmarsh.

It is because of the important role that marshes play in climate change that Jennifer, and her students, spend a lot of time getting muddy in saltmarshes. Jennifer wants to know more about the carbon storage capacity of healthy marshes, and also those that have been disturbed by human activity. She also wants to know whether it is possible to restore degraded salt marshes to help improve their carbon storage capacity. Much of her work focuses on comparing how degraded and newly restored marshes to healthy marshes. By looking at the differences and similarities, she can document the ways that restoration can help increase carbon storage. Since Jennifer and her students work in urban areas with a lot of development along the coast, there are lots of degraded marshes that can be restored. If she can show how important restoring marshes is for increasing plant diversity and helping to combat climate change, then hopefully people in the area will spend more money and effort on marsh restoration.

Jennifer predicted that: 1) healthy marshes will have a higher diversity of native vegetation and greater biomass than degraded salt marshes, 2) restored marshes will have a lower or intermediate level of biomass depending on how long it has been since the marsh was restored, and 3) newly restored marshes will have lower biomass, while marshes that were restored further in the past will have higher biomass.

To test her predictions, Jennifer studied two different salt marshes near Boston, Massachusetts, called Oak Island and Neponset. Within each marsh she sampled several sites that had different restoration histories. She also included some degraded sites that had never been restored for a comparison. Jen measured the total number of different plant species and plant biomass at multiple locations across all study sites. These measurements would give Jen an idea of how much carbon was being stored at each of the sites.

Featured scientist: Jennifer Bowen from Northeastern University

Flesch–Kincaid Reading Grade Level = 11.0

Sticky situations: big and small animals with sticky feet

Travis in the lab measuring the stickiness of a gecko’s toe.

Travis in the lab measuring the stickiness of a gecko’s toe.

The activities are as follows:

Species are able to do so many amazing things, from birds soaring in the air, lizards hanging upside-down from ceilings, and trees growing hundreds of feet tall. The study of biomechanics looks at living things from an engineering point of view to study these amazing abilities and discover why species come in such a huge variety of shapes and sizes. Biomechanics can improve our understanding of how plants and animals have adapted to their environments. We can also take what we learn from biology and apply it to our own inventions in a process called biomimicry. Using this approach, scientists have built robotic jellyfish to survey the oceans, walking robots to help transport goods, and fabrics that repel stains like water rolling off a lotus leaf.

Travis studies biomechanics and is interested in the ability of some species to climb and stick to walls. Sticky, or adhesive, toe pads have evolved in many different kinds of animals, including insects, arachnids, reptiles, amphibians, and mammals. Some animals, like frogs, bats, and bugs use suction cups to hold up their weight. Others, like geckos, beetles, and spiders have toe pads covered in tiny, branched hairs. These hairs actually adhere to the wall! Electrons in the molecules that make up the hairs interact with electrons in the molecules of the surface they’re climbing on, creating a weak and temporary attraction between the hairs and the surface. These weak attractions are called van der Waals forces.

Travis catching lizards in the Dominican Republic.

Travis catching lizards in the Dominican Republic.

The heavier the animal, the more adhesion they will need to stick and support their mass. With a larger toe surface area, more hairs can come in contact with the climbing surface, or the bigger the suction cup can be. For tiny species like mites and flies, tiny toes can do the job. Each fly toe only has to be able to support a small amount of weight. But when looking at larger animals like geckos, their increased weight means they need much larger toe pads to support them.

When comparing large and small objects, the mass of large objects grows much faster then their surface area does. As a result, larger species have to support more mass per amount of toe area and likely need to have non-proportionally larger toes than those needed by lighter species. This results in geckos having some crazy looking feet! This relationship between mass and surface area led Travis to hypothesize that larger species have evolved non-proportionally larger toe pads, which would allow them to support their weight and stick to surfaces.

To investigate this idea, Travis looked at the data published in a paper by David Labonte and fellow scientists. In their paper they measured toe pad surface area and mass of individual animals from 17 orders (225 species) including insects, arachnids, reptiles, amphibians, and mammals. From their data, Travis calculated the average toe pad area and mass for each order.

Travis then plotted each order’s mass and toe pad area on logarithmic axes so it is easier to compare very small and very large values. Unlike a standard axis where the amount represented between tick marks is always the same, on logarithmic axes each tick mark increases by 10 times the previous value. For example, if the first tick represents 1.0, the second tick will be 10, and the next 100. As an example, look at the graphs below.

gecko-graph

The left plot shows hypothetical gecko species of different sizes, but with proportional toes. Their mass per toe pad area ratio (g/mm2) varies, with larger species having larger g/mm2 ratios. In this case, larger species have to support more mass per toe pad area. In the right plot, larger gecko species have disproportionally larger toes. These differences change each species’ mass per toe pad area ratios, so that all species, regardless of their size, have the same mass per toe pad area ratio.

Featured scientists: David Labonte, Christofer J. Clemente, Alex Dittrich, Chi-Yun Kuo, Alfred J. Crosby, Duncan J. Irschick, and Walter Federle. Written by: Travis Hagey

Data Nugget Flesch–Kincaid Reading Grade Level = 10.3

Scaling Up – Math Activity Flesch–Kincaid Reading Grade Level = 9.5

There is a scientific paper associated with the data in this Data Nugget. The data was used with permission from D. Labonte.

Labonte, D., Clemente, C.J., Dittrich, A., Kuo, C.Y., Crosby, A.J., Irschick, D.J. and Federle, W., 2016. Extreme positive allometry of animal adhesive pads and the size limits of adhesion-based climbing. Proceedings of the National Academy of Sciences, p.201519459.

To learn more about Travis and his research on geckos, read this blog post, “An evolving sticky situation” and check out the video below!

poster
Sticky situations video
00:00
--
/
--

For a video and article on using “gecko power” to scale a building, check out this article – Climbing a Glass Building? Try a Gecko’s Sticky Pads


dr-fowleriAbout Travis: Ever since Travis was a kid, he was interested in animals and wanted to be a paleontologist. He even had many dinosaur names memorized to back it up! In college he discovered evolutionary biology, which drove him to apply for graduate school and become a scientist. There, he fell in love with comparative biomechanics, which combines evolutionary biology and mechanical engineering. Today Travis studies geckos and their sticky toes that allow them to scale surfaces like glass windows and tree branches.

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

Finding Mr. Right

Mountain chickadee, photo by Vladimir Pravosudov

Mountain chickadee, photo by Vladimir Pravosudov

The activities are as follows:

Depending on where they live, animals can face a variety of challenges from the environment. For example, animal species that live in cold environments may have adaptive traits that help them survive and reproduce under those conditions, such as thick fur or a layer of blubber. Animals may also have adaptive behaviors that help them deal with the environment, such as storing food for periods when it is scarce or hibernating during times of the year when living conditions are most unfavorable. These adaptations are usually consistently seen in all individuals within a species. However, sometimes populations of the same species may be exposed to different conditions depending on where they live. The idea that populations of the same species have evolved as a result of certain aspects of their environment is called local adaptation.

Mountain chickadees are small birds that live in the mountains of western North America. These birds do not migrate to warmer locations like many other bird species; they remain in the same location all year long. To deal with living in a harsh environment during the winter, mountain chickadees store large amounts of food throughout the forest during the summer and fall. They eat this food in the winter when very little fresh food is available. There are some populations of the species that live near the tops of mountains, and some that live at lower elevations. Birds at higher elevations experience harsher winter conditions (lower temperature, more snow) compared to birds living at lower elevations. This means that birds higher in the mountains depend more on their stored food to survive winter.

Carrie conducting field research in winter, photo by Vladimir Pravosudov

Carrie conducting field research in winter, photo by Vladimir Pravosudov

Carrie studies mountain chickadees in California. Based on previous research that was done in the lab she works in, she learned these birds have excellent spatial memory, or the ability to recall locations or navigate back to a particular place. This type of memory makes it easier for the mountain chickadees to find the food they stored. Carrie’s lab colleagues previously found that populations of birds from high elevations have much better spatial memory compared to low-elevation birds. Mountain chickadees also display aggressive behaviors and fight to defend resources including territories, food, or mates. Previous work that Carrie and her lab mate conducted found that male birds from low elevations are socially dominant over male birds from high elevations, meaning they are more likely to win in a fight over resources. Taken together, these studies suggest that birds from high elevations would likely do poorly at low elevations due to their lower dominance status, but low-elevation birds would likely do poorly at high elevations with harsher winter conditions due to their inferior memory for finding stored food items. These populations of birds are likely locally adapted – individuals from either population would likely be more successful in their own environments compared to the other.

In this species, females choose which males they will mate with. Males from the same elevation as the females may be best adapted to the location where the female lives. This means that when the female lays her eggs, her offspring will likely inherit traits that are well suited for that environment. If she mates with males that match her environment, she is setting up her offspring to be more successful and have higher survival where they will live. Carrie wondered if female mountain chickadees prefer to mate with males that are from the same elevation and therefor contribute to local adaptation by passing the adaptive behaviors on to the offspring. This process could contribute to the populations becoming more and more distinct. Offspring born in the high mountains will continue to inherit genes for good spatial memory, and those born at low elevations will inherit genes that allow them to be socially dominant.

Mountain chickadee, photo by Vladimir Pravosudov

Mountain chickadee, photo by Vladimir Pravosudov

To test whether female mountain chickadees contribute to local adaptation by choosing and mating with males from their own elevation, Carrie brought high- and low-elevation males and females into the lab. Carrie made sure that the conditions in the lab were similar to the light conditions in the spring when the birds mate (14 hours of light, 10 hours of dark). Once a female was ready, she was given time to spend with both males in a cage that is called a two-choice testing chamber. On one side of the testing chamber was a male from a low-elevation population, and on the other side was a male from a high-elevation population. Each female could fly between the two sides of the testing chamber, allowing her to “choose” which male she preferred to spend time close to (measured in seconds [s]). There was a cardboard divider in the middle of the cage with a small hole cut into it. This allowed the female to sit on the middle of the cardboard, which was not counted as preference for either male. Females from both high- and low-elevation populations were tested in the same way. The female bird’s preference was determined by comparing the amount of time the female spent on either side of the cage. The more time a female spent on the side of the cage near one male, the stronger her preference for that male.

Watch a video of one of the experimental trials:

Featured scientist: Carrie Branch from University of Nevada Reno

Flesch–Kincaid Reading Grade Level = 11.5

Additional teacher resources related to this Data Nugget include:


carrie-branchAbout Carrie: I have been interested in animal behavior and behavioral ecology since my second year in college at the University of Tennessee. I am primarily interested in how variation in ecology and environment affect communication and signaling in birds. I have also studied various types of memory and am interested in how animals learn and use information depending on how their environment varies over space and time. I am currently working on my PhD in Ecology, Evolution, and Conservation Biology at the University of Nevada Reno and once I finish I hope to become a professor at a university so that I can continue to conduct research and teach students about animal behavior. In my spare time I love hiking with my friends and dogs, and watching comedies!

SaveSave

SaveSave

SaveSave

SaveSaveSaveSave

NABT 2016 – BEACON Evolution Symposium

The color polymorphism in bluefin killifish – males display anal fins in blue, red, or yellow.

Why so blue? The determinants of color pattern in killifish

For more information on the NABT 2016 conference, check out their website, here.

Why be blue in a swamp? The evolution of color patterns and color vision in killifish

Animal communication happens when one organism emits a signal, which then travels through the environment and is detected by the sensory system of another. The environment in which signaling occurs can dramatically alter signal transmission and result in selection where different signals are favored in different environments. The bluefin killifish provide a compelling example. Some populations are found in crystal clear springs (where UV and blue light are highly abundant) and others are found in tannin-stained swamps (where UV/blue light is depauperate). Paradoxically, males with blue color patterns are abundant in swamps and are rare in springs. The resolution to this paradox requires a consideration of how genetics and the environment influence trait expression, as well as the direction of natural and sexual selection in different habitat types, and the manner in which animals with different visual systems perceive the same color pattern.

Data Nugget Workshop: Why so blue? The determinants of color pattern in killifish

Data Nuggets are hands-on activities designed to improve the scientific and quantitative skills of students by having them graph and interpret scientific data gathered by practicing scientists. This workshop will provide an overview of Data Nuggets and present a Data Nugget featuring data on the genetic and environmental basis of color pattern expression in killifish. This Data Nugget will allow students to determine whether color pattern expression is due to ‘nature’ (e.g., genetics), ‘nurture’ (e.g. environment), or the interaction of the two.

beaconThe materials from the Data Nugget workshop are as follows:

Workshop organized and presented by: Becky Fuller, Elizabeth Schultheis, Melissa Kjelvik, Alexa Warwick, and Louise Mead

BEACON CENTER FOR THE STUDY OF EVOLUTION IN ACTION, MICHIGAN STATE UNIVERSITY & UNIVERSITY OF ILLINOIS

Lobsters out of water: Scientists at film camp in Maine

beacon_header

This post is by MSU graduate student Carina Baskett. See the original article on the BEACON webpage (reproduced below):

Carina and her fellow science communicator Klara Scharnagl making a stop at Niagara Falls on the way back from a film workshop in Maine.

Carina and her fellow science communicator Klara Scharnagl making a stop at Niagara Falls on the way back from a film workshop in Maine.

My colleague Klara Scharnagl had a great idea. “Let’s shoot it from the perspective of a vegetable!” As a scientist, I don’t usually go to work expecting to hear a sentence like that! But yes, we did end up shooting a short video at a farmer’s market from the perspective of a love-struck melon, all in the name of science education.

Klara and I were at a weeklong film workshop in Maine the first week of September to improve our filmmaking skills. We are working on a BEACON-funded project with Melissa Kjelvik, Liz Schultheis, Travis Hagey, and Anna Groves to make videos for classrooms about scientists. The videos will accompany Data Nuggets (DNs), which are exercises for K-12 and undergraduate students to practice working with data from real, current research. DNs were co-developed by MSU graduate students and K-12 teachers.

The goals of the videos are two-fold. First, we aim to redefine how students see science and scientists by featuring researchers from diverse backgrounds, giving students more face time with the scientists than they can get from a photo in a DN. Second, we aim to enhance evolution education by showing how data is collected and presenting information in an alternative media to the standard written descriptions.

A Maine lobster dinner was the cherry on top of the film workshop sundae!

A Maine lobster dinner was the cherry on top of the film workshop sundae!

On top of those goals, there is the overriding need for the videos to be engaging, and the first, somewhat invisible step toward that goal is to be technically proficient. Klara and I each have experience with science outreach and a smattering of the requisite technical skills for filmmaking, but we needed more training and experience with videos. So we found a workshop, “Documentary Camera” at a school called Maine Media.

Klara and I were the only scientists out of the 11 students in the class. In fact, some of the students said that we were the only scientists they had ever met. Being in a classroom where I was clueless and surrounded by people more expert than me was a lot like being a first-year graduate student again! But it was fun to learn so much.

To practice the techniques that we would be using for the DN videos, Klara and I made a “pilot.” We decided that it had to be about plants or lichens (the organisms that we study), not humans or animals, because a major challenge of the DN videos will be to tell engaging stories about organisms and questions that aren’t inherently exciting to most of the population. Personally, I find plants and lichens to be a lot more exciting than, say, sports, but I realize I’m in the minority with that view.

The closest we could come to interviewing a plant expert was to go to an “herbal apothecary,” a pharmacy where all the medicines and remedies come from plants. The message of the video was to get viewers excited about the chemicals that plants make, by pointing out that traditional and many modern medicines come from plants, and then slip in some biology by asking why plants make these chemicals (generally to defend themselves from pests and disease).

We visited the apothecary on short notice, and were able to snag a quick interview with a gardener. When asked, “Plants don’t make these chemicals for human use. Why do they?” she said, “How do we know they don’t make them for humans? Hmm, I’ll have to think about that.” This was an informative moment for us in a couple ways.

First, it was a good reminder that a lot of the scientific knowledge we take for granted, and even the questions that scientists think to ask, are not common sense. Even someone whose job it is to work with plants and the chemicals they manufacture was not considering the evolutionary explanation for why plants have these adaptations that we are co-opting. Yet it would be helpful for someone working with plant medicine to have an understanding that related plants might manufacture similar compounds and that the environmental context (such as an outbreak of caterpillars on a plant) might affect the drugs that they are harvesting. That’s why evolution education and outreach are so important!

Second, the interview was good practice for the DN videos because we aren’t always going to get a nice, video-ready sound bite from everyone we talk to. Some of the scientists we interview might use too much jargon and be unable to make their research approachable. But that’s why we will include narration and drawings to guide the narrative. We ended up using the gardener’s quote about why she thinks plants are amazing and exciting, and we provided the explanation of why plants make chemicals that we use for medicine.

So was our science communication effective? On the last day of the workshop, participants from several classes ate an amazing dinner of Maine lobster, and then watched each other’s projects. It was funny to see our educational video mixed in with a beautifully shot piece showing a nearby harbor as the catch was being brought in; with a portrait of a pair of local artists whose house is covered in drawings; and with some dramatic fictional pieces from another class. When I asked everyone afterward, “So why do plants make chemicals that we use for medicine?” almost all of them answered correctly. If we can reach a group of filmmakers who didn’t even know there would be a quiz, hopefully we can have an impact on students, by helping to make Data Nuggets just a little more delicious.

You can watch our 5-minute video below! And if you have an extra few minutes and wouldn’t mind giving us some feedback, please click here.

Gene expression in stem cells

Adam working in the lab at Colorado State University.

Adam working in the lab at Colorado State University.

The activities are as follows:

Every cell in your body contains the same DNA. How is it that genetically identical skin, brain, and muscle cells can look very different and perform very different functions from each other? Cells differentiate, or become different from one another, by turning certain genes on and off. This process is called gene expression. For example, when you spend time in the sun your skin cells turn on the gene for pigment, which protects your cells from bright sunlight. In the winter when there is less sunlight, your cells turn off this gene. This process your body uses to turn genes on and off is the same one it uses to develop from one cell into the many different cell types that make up your body. Stem cells have the ability to turn into any other type of cell in the body, an ability known as pluripotency. Your body retains some stem cells for your entire life.

Some genes are only turned on in specific types of cells because they have specialized jobs for those cell types, like muscle or brain cells. Other genes are more like managers, controlling which genes are turned on and off. The activity of these manager genes may be more common in stem cells because they could control which type of cell the stem cell will become. In recent years, scientists discovered they could reprogram specialized cells back into non-specialized stem cells, simply by turning on several manager genes. They call these reprogrammed cells induced pluripotent, or iPS.

Adam working under the hood, reprogramming specialized cells into induced pluripotent stem cells for his experiments.

Adam working under the hood, reprogramming specialized cells into induced pluripotent stem cells for his experiments.

Adam was working as a biologist in Colorado when he learned that many cool medical advances in regenerative and personalized medicine will happen when we figure out which genes are turned on, and which are turned off, in pluripotent stem cells. In his research, Adam wanted to look at gene expression for two genetically identical cell lines, those that have specialized and those that have been reprogrammed to be iPS stem cells. He was interested to see which genes are expressed by both types of cells and which genes are only expressed in one type of cell.

He decided to work with fibroblast cells because they are easy to grow in the lab. Fibroblasts cells are mainly responsible for production and maintenance of the extracellular matrix (including joints, ligaments, tendons and connective tissues), which is critical in holding the body’s tissues together. From reading the work of other scientists, Adam learned how to transform fibroblast cells into iPS stem cells. This knowledge lead him to two genetically identical types of cells – (1) specialized fibroblast cells and (2) unspecialized iPS cells. When fibroblast cells are transformed into unspecialized iPS cells, their function changes and they become responsible for wound healing and generating new tissues, acting like a reserve set of cells. Because fibroblast and iPS cells perform very different functions, Adam thinks it is likely that each cell line will expresses genes that are specific to its individual function.

Adam looked at expression in 10 different genes that are thought to have important functions for fibroblast or iPS cells. Adam measured the expression for each gene by looking at RNA abundance of each gene in the different cell types. RNA is the intermediate between DNA (the genetic blueprint) and protein (the functional worker of the cell). Adam chose to look at RNA, because it is often representative of how much protein is present in a cell, which is very difficult to measure directly. Adam analyzed three replicates for each cell type. He replicated in order to get a more accurate representation for each cell type. This is important in case the samples were in slightly different conditions, like warmer or cooler temperatures, which could alter gene expression. This experiment allowed Adam to figure out which genes are turned on in iPS cells, allowing him to better understand how stem cells work.

iPS cells display different gene expression and physical appearance than HFF cells: Figures A and B are low magnification images of two different iPS cell colonies. iPS cells are usually small, round, and like to grow in circular-like colonies. Figures C is a low magnification image of HFF cells. HFF cells tend to appear long and slender almost like trees. Generally, HFF cells like to grow near each other, but not in colonies. Figure D is a higher magnification image of the black box in figure C, showing a group of HFF cells growing in close proximity with each other.

iPS cells display different gene expression and physical appearance than HFF cells: Figures A and B are low magnification images of two different iPS cell colonies. iPS cells are usually small, round, and like to grow in circular-like colonies. Figures C is a low magnification image of HFF cells. HFF cells tend to appear long and slender almost like trees. Generally, HFF cells like to grow near each other, but not in colonies. Figure D is a higher magnification image of the black box in figure C, showing a group of HFF cells growing in close proximity with each other.

Featured scientist: Adam Heck from Colorado State University. Written with Sandra Weeks from the Poudre Valley School District.

Flesch–Kincaid Reading Grade Level = 10.6

The gene expression data found in this activity was gathered from the following paper – citation and link below:

Beetle battles

Erin has always loved beetles! Here she is with a dung beetle in Tanzania, during a graduate school class trip.

Erin has always loved beetles! Here she is with a dung beetle in Tanzania, during a graduate school class trip.

The activities are as follows:

Male animals spend a lot of time and energy trying to attract females. In some species, males directly fight with other males to become socially dominant. They also fight to take over and control important territories. This process is known as male-male competition. The large antlers of male elk are an example of a trait that has been favored by male-male competition. In other species, males try to court females directly. This process is known as female choice. The flashy tails of male peacocks are a good example of a trait that has been favored by female choice. Lastly, in some species, both male-male competition AND female choice determine which males get to mate. In order to be successful, males have to be good at both fighting other males and making themselves attractive to females. Erin is a biologist interested in these different types of mating systems. She wondered if she could discover a single trait that was favored by both male-male competition and female choice.

Two dung beetle males fighting for ownership of the artificial tunnel. Why is the photo pink? Because beetles mate and fight in dark, underground tunnels, Erin carried out all of her experiments in a dark room under dim red-filtered light. Beetles can’t see the color red, so working under red-filtered light didn’t affect the beetles’ behavior, and allowed Erin to see what the beetles were doing.

Two dung beetle males fighting for ownership of the artificial tunnel. Why is the photo pink? Because beetles mate and fight in dark, underground tunnels, Erin carried out all of her experiments in a dark room under dim red-filtered light. Beetles can’t see the color red, so working under red-filtered light didn’t affect the beetles’ behavior, and allowed Erin to see what the beetles were doing.

In horned dung beetles, male-male competition and female choice are both important in determining which males get to mate. Females dig tunnels underneath fresh piles of dung where they mate and lay their eggs. Beetles only mate inside these underground tunnels, so males fight with other males to become the owner of a tunnel. Males that control the tunnels have a better chance to mate with the female that dug it. However, there is often more than one male inside a breeding tunnel. Small males will sneak inside a main tunnel by digging a connecting side tunnel. Additionally, the constant fights between large males means that the ownership of tunnels is constantly changing. As a result, females meet many different males inside their tunnels. It is up to them to choose the male they find the most attractive, and with whom they’ll mate. In this species of dung beetle, males try to persuade females to mate by quickly tapping on the females’ back with their forelegs and antennae. Previous research has found that females are more likely to mate with males that perform this courtship tapping at a fast rate. Because both fighting and courtship tapping take a lot of strength, Erin wondered if the trait of strength was what she was looking for. Would stronger male dung beetles be favored by both male-male competition and female choice?

To keep beetles alive in the lab, Erin set up a bucket with sand, and placed one pile of dung in the center. Female beetles dug tunnels below the dung.

To keep beetles alive in the lab, Erin set up a bucket with sand, and placed one pile of dung in the center. Female beetles dug tunnels below the dung.

To test her hypothesis, Erin conducted a series of experiments to measure the mating success, fighting success, and strength of male dung beetles. First, Erin measured the mating success of male beetles by placing one male and one female in an artificial tunnel (a piece of clear plastic tubing). She watched the pair for one hour, and measured how quickly the males courted, and whether or not the pair mated. Second, Erin measured the fighting success of males by staging fights between two males over ownership of an artificial tunnel. Beetle battles consist of a head-to-head pushing match that results in one male getting pushed out of the tunnel, and the other male remaining inside. To analyze the outcome of these fights, Erin randomly selected one male in each pair as the focal male, and scored the interaction as a “win” if the focal male remained inside the tunnel, and as a “loss” if the focal male got pushed out of the tunnel. In some cases, there was not a clear winner and loser because either both males left the tunnel, or both males remained inside. These interactions were scored as a “tie”. Finally, Erin determined each beetles’ strength. She measured strength as the amount of force it took to pull a male out of an artificial tunnel. To do this, she super-glued a piece of string to the back of the beetle, had it crawl into an artificial tunnel, attached the string to a spring scale, and then pulled on the scale until the beetle was pulled out of the tunnel.

Featured scientist: Erin McCullough from the University of Western Australia

Flesch–Kincaid Reading Grade Level = 8.8

Additional resources related to this Data Nugget:


erinAbout Erin: I am fascinated by morphological diversity, and my research aims to understand the selective pressures that drive (and constrain) the evolution of animal form. Competition for mates is a particularly strong evolutionary force, and my research focuses on how sexual selection has contributed to the elaborate and diverse morphologies found throughout the animal kingdom. Using horned beetles as a model system, I am interested in how male-male competition has driven the evolution of diverse weapon morphologies, and how sexual selection has shaped the evolution of physical performance capabilities. I am first and foremost a behavioral ecologist, but my research integrates many disciplines, including functional morphology, physiology, biomechanics, ecology, and evolution.

DATA IN THE CLASSROOM

Datasets: Collection of websites that offer freely available online data.

Data & Data Visualization Tools: Collection of websites that offer free platforms for data visualization.

  • DataClassroom – our partner on Digital Data Nuggets, activities where studies easily explore large datasets and make beautiful graphs, develop their data literacy abilities, do statistics, and more.
  • FieldScope by BSCS – interactive online platform that provides citizen scientists with the means to collect and analyze data. Emphasizes spatial citizen science datasets. Allows users to visualize data both spatially and graphically.
  • Common Online Data Analysis Platform (CODAP) by Concord Consortium – easy-to-use web-based data analysis platform, geared toward middle and high school students, and aimed at teachers and curriculum developers. Designed to help students summarize, visualize and interpret data, advancing their skills to use data as evidence to support a claim.
  • Tuva Labs – online research-based tools and inquiry-based tasks enhance students’ learning and application of essential mathematical, statistical, and probability concepts. Subscription necessary to access materials.
  • Harvard Forest Schoolyard LTER Program – A platform developed to easily visualize the data collected by students at the Harvard Forest. The graphing tool can be found here. The data can be downloaded here.
  • Serenity – easy-to-use web-based data analysis interface for data analytics in R, built using Shiny.
  • Laboratory for the study of exoplanets (ExoLab) – Free, online astronomical laboratory. Based on cutting-edge astronomy research and provides students with data from telescopes. Designed to increase study data literacy, while engaging them in the search for habitable worlds beyond earth.
  • NASA Earth Observations (NEO) – Here you can browse and download imagery of satellite data from NASA’s constellation of Earth Observing System satellites. Over 50 different global datasets are represented with daily, weekly, and monthly snapshots, and images are available in a variety of formats including JPEG, PNG, Google Earth, and GeoTIFF.
  • Data USA – Visualization of US Public Data
  • TerraScope – worldwide environmental and social demographic data in a manipulative digital platform that can drive inquiry investigations (TerraPopulus datasets synthesized from a variety of sources for broad application).
  • iDigBio – large set of digitized natural history collections, along with educational resources and ideas for classroom use.
  • TinkerPlots – software for dynamic data exploration
  • StatKey – collection of web-based statistics apps, written to pair with the statistics textbook “Statistics: Unlocking the power of data” by Lock^5. Has datasets available or you can upload your own.
  • Dryad Lab – collection of free, openly-licensed, high-quality, hands-on, educational modules for students to engage in scientific inquiry using real data.

Using Data in the Classroom

  • Using Data in the Classroom – information or background about pedagogical or practical issues in using data in the classroom
  • List of data activities, lessons, and resources for the classroom, sorted by grade level – compiled by Oceans of Data
  • DataONE – DataONE is committed to educating the community about data stewardship, including outlining best practices for data management and providing educational materials for use by those that support researchers.
    • Data Management
    • Data Stories – success stories and cautionary tales from researchers related to their experiences with managing and sharing scientific research data
  • Maine Data Literacy Project – offers a framework, teaching materials, and professional development for middle and high school teachers to help students acquire skills and language for making sense of data and graphs as evidence to support their reasoning

Modelling