Why are butterfly wings colorful?

The red postman butterfly, Heliconius erato.

The activities are as follows:

You’ve probably noticed a bright orange butterfly in your garden. It’s hovering over a plant, and then pausing to lay an egg. It’s landing on a flower, and then sipping the tasty syrup. Big wings allow butterflies to fly everywhere with ease. But you may wonder, why are their wings so brightly colored? One reason why butterflies might have brightly colored wings is that these colors warn birds and other predators that they would not make a tasty meal. Another potential reason for butterflies to have bright colors and dramatic patterns is to attract mates. However, there is little research that shows whether color alone or color pattern together deter predators or attract mates.

Susan holding a different species of butterfly in the field.

The red postman butterfly lives in rainforests in Mexico, Central America, and South America. The color pattern on its wing is usually a mix of red, yellow, and black. These patterns vary a lot depending on their location; for instance one variant has a red bar on the forewings and a yellow bar on its hind wings while another variant has red rays on the hindwings and a yellow bar on the forewings. Scientists Susan, Adriana, and Robert have been studying this species for many years. While hiking in the rainforest, they noticed that not all butterfly species are brightly colored. They started to wonder why the red postman butterfly has bright colors, but other species do not. They thought maybe the red and yellow colors and patterns signaled toxicity to predators, like birds; or these wing features may be used to help find and attract mates. Susan, Adriana and Robert predicted that brightly colored butterflies would be avoided by birds and approached more often by other butterflies of the same species. They also predicted that the local color pattern would get the strongest response from predators and mates, because it would be most recognized in that area.

To test their ideas, the team of butterfly scientists created three kinds of artificial red postman butterfly models using paper and a printer. Each model had a plastic body and paper wings. Model A had the same pattern as the local butterflies at the study site in the La Selva Tropical Biological Station in Sarapiquí, Costa Rica, with brightly colored red and yellow wings. Model B also had the same pattern as the local butterflies, but only had black and white tones. Model C had a different pattern than the locals with bright red and yellow colors.

One of the 400 black and white models in the rainforest during the experiment.

To test for differences in predation attempts based on wing color and patterns, they placed 4 of each model at 100 different sites in the rainforest. This made a total of 1,200 model butterflies with 400 of each type! Models were placed far enough apart that they were not within human visible range from one another (on average separated by 5-10 m), and were positioned approximately 1.5 m above the ground, which is consistent with natural roosting heights. The models were left out in the forest for a total of 96 hours. Each day they were inspected and counted for bird beak marks on their wings and plastic bodies. Only new marks were scored each day, so attacks on individual models were only counted once. To test whether red postman butterflies were more attracted to bright colors, or the local wing pattern, Susan and her student field assistants also caught 51 wild red postman butterflies from the rainforest and brought them to a greenhouse. They then presented the live butterflies with the three models and counted how many times they approached each model type.

Featured scientists: Susan Finkbeiner, Adriana Briscoe, and Robert Reed from University of California, Irvine

Flesch–Kincaid Reading Grade Level = 9.9

Watch two videos of experimental trials from the greenhouse experiment:

The first shows a male butterfly approaching a butterfly paper model with color. The second shows a butterfly as it chooses between a butterfly paper model that is black-and-white and one that has color.

poster
Video Trial 1
00:00
--
/
--
poster
Video Trial 2
00:00
--
/
--

 

There are two publications related to this Data Nugget:

You can follow all three scientists on Twitter where they tweet about the latest scientific discoveries involving butterflies, animals, vision and behavior! Adriana @AdrianaBriscoe, Susan @Fink_about_it, and Robert @FascinatingPupa.

SaveSave

SaveSave

SaveSaveSaveSave

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

How to Escape a Predator

A stalk-eyed fly and spider interacting in the arena.

A stalk-eyed fly and spider interacting in the arena.

The activities are as follows:

Stalk-eyed flies are insects that have their eyes on the ends of eyestalks, or long projections from the sides of their head. Eyestalks are a sexual signal that males use to attract females. The longer the eyestalks, the more attractive a male is to females and the more mates he gets. For these flies, sexual selection leads to an elaborate trait, just like a peacock’s tail. Males with longer eyestalks have more babies and pass their traits on. Over generations, sexual selection leads to longer and longer eyestalks in males.

However, these eyestalks may come with a cost. Males with longer eyestalks may not be able to move easily and quickly. If they can’t move as fast, males with long eyestalks are potentially worse at escaping predators. Natural selection may select against long eyestalks if males with more elaborate traits are killed and eaten more often by predators. If predators eat males with longer eyestalks before the flies reproduce, they will not get to pass on their traits, regardless of how attractive they are to females.

Variation between stalk-eyed fly species in eyestalk length.

Variation between stalk-eyed fly species in eyestalk length.

In addition to eyestalk length, other traits could affect survival in male stalk-eyed flies. Perhaps the fly’s behavior is more important than its eyestalk length when faced with a predator. When biologists Amy and John first started researching how eyestalk length affected survival, they noticed something intriguing! The flies showed many different behaviors when face to face with a spider predator. Some examples of behaviors included grooming, walking or flying towards the predator, quickly walking or flying away from the predator, displaying forelegs, and bobbing their abdomens. When prey use these antipredator behaviors, predators must put in more work to catch prey, and they will sometimes give up. Therefore, antipredator behaviors may influence the predator’s choice of prey, and certain behaviors that make prey harder to catch could lead to increased survival.

To test whether differences in eye stalk length and/or antipredator behavior were important for survival, male stalk-eyed flies were put in cages with predators. Amy and John filmed the fly behaviors and analyzed the footage. They calculated the frequency and proportion of time that flies were displaying antipredator behaviors. If males with longer eyestalks have lower survival than males with shorter eyestalks, it suggests that longer eyestalks make it harder to avoid predators. However, if eyestalk length has no effect on survival, it suggests that male flies with long eyestalks are able to compensate for their lack of speed through behavior.

Featured scientists: Amy Worthington and John Swallow from Washington State University and University of Colorado, Denver. Written by: Brooke Ravanelli from Denver Public Schools and John Swallow.

Flesch–Kincaid Reading Grade Level = 10.7

There is a scientific paper associated with the data in this Data Nugget. The citation and PDF for the paper is below.

Video showing how the long eyestalks of males form!

Videos of a stalk eyed fly and spider predator together in cages. First video shows male fly displaying, grooming, and approaching spider.

A tail of two scorpions

Ashlee & Matt Rowe

Ashlee and Matt Rowe at the Santa Rita Experimental Range in Arizona

The activities are as follows:

Animals have many ways to defend against predators. Many species use camouflage to avoid being seen. Others rely on speed to escape. Some species avoid capture by hiding in a safe place. Other animals use painful and venomous bites or stings to try to prevent attacks or to make capture more difficult. Anyone who has been stung by a bee or wasp understands how stinging could be a great way to keep predators away! However, there is little research that documents if painful stings or bites deter predators.

The grasshopper mouse lives at the base of the Santa Rita Mountains in Arizona. Scientists Ashlee and Matt have been studying this mouse for many years and wanted to know what the mouse ate. In the mountains, there are two scorpions that make a great food source for the mice. One of the scorpion species has a painful sting. The other species is slightly larger, but its sting is not painful. Ashlee and Matt thought that painful, venomous stings would prevent predator attacks and that the painless species would be attacked and eaten more often.

The Santa Rita foothills - habitat for the grasshopper mouse and scorpions

The Santa Rita foothills – habitat for the grasshopper mouse and scorpions

The scientists collected six grasshopper mice from the wild. Back in the lab, they trained the mice to expect a food reward when they tipped over a small cup containing live prey. Once trained, the mice were used in an experiment. The mice were presented with two cups to choose from. One contained the scorpion species that has a painful sting. The other cup contained the scorpion species that has a painless sting. Ashlee and Matt collected data on which cup the mice chose to approach, inspect, or pursue (by tipping over the cup). They also recorded if the mice attacked or consumed the painless or painful species of scorpion. Each trial ended when the mouse finished consuming one of the scorpions. If painful stings prevent a predator from attacking, they predicted the mice would choose to eat the scorpion species with the painless sting more often.

Watch a video of one of the experimental trials:

poster
Mouse Trial
00:00
--
/
--

Watch three additional videos on the grasshopper mouse and scorpions:

Images of the southern grasshopper mouse (Onychomys torridus) capturing and eating the painful species of scorpion (Centruroides sculpturatus).

Ot vs Cs 4

Ot vs Cs 1

Ot vs Cs 2

Size differences of the two scorpions used in the experiments (painful Arizona bark scorpion, Centruroides sculpturatus is on the left; painless stripe-tailed scorpion, Hoffmannius spinigerus on the right)size comparison 1 (1 of 1)

Featured scientists: Ashlee and Matt Rowe from Michigan State University

Undergraduate researchers also involved with the project: Travis Tate and Crystal Niermann from SHSU; Rolando Barajas, Hope White, and Amber Suto from Michigan State University

Flesch–Kincaid Reading Grade Level = 7.1

SaveSave

SaveSave

Average Rating

Shooting the poop

The activities are as follows:butterfly

Imagine walking through a forest in the middle of summer. You can hear birds chirping, a slight breeze rustling the leaves, and a faint pinging noise like rain. However, what you hear is not rain – it is the sound of millions of forest insects pooping!

If we look closer to see who is making all this frass (insect poop) you’ll notice there are tons of caterpillars amongst the leaves. You might see caterpillars eating plants and hiding from predators. Some caterpillars might camouflage themselves, while others build shelters from leaves to avoid being seen. Others are brightly colored to warn predators that they have chemicals that make them taste awful.

The silver-spotted skipper is a caterpillar that lives in the forest. They have a variety of defense strategies against enemies, including building leaf shelters for protection. For these insects, the sight and smell of poop might alert predators that there is a tasty meal nearby. Usually caterpillars keep moving and leave their frass behind, but this species builds shelters and isn’t able to keep moving because they need their shelters for protection.

Martha is a behavioral biologist who studies these insects. While raising silver-spotted skipper caterpillars in the lab, Martha noticed that they were making a pinging noise in their containers. Upon further observation, she discovered that they “shoot their poop”, sometimes launching their frass over 1.5m! Martha wanted to figure out why these caterpillars might have this very strange behavior. Perhaps launching their frass is a way to avoid being found by predators.

To evaluate whether the smell of frass helps predators find and locate silver-spotted skippers, Martha conducted an experiment with a wasp predator that eats these caterpillars. She allowed two silver-spotted skippers to build shelters on a leaf and then carefully removed the caterpillars. She then inserted 6 frass pellets into one of the shelters, and 6 beads designed to look like frass but with no smell (control treatment) into the other shelter. She placed the leaf with the two shelters in a cage containing an actively foraging wasp colony (n = 10 wasps). She recorded how many times the wasps visited each shelter (control beads or frass) and how much time the wasps spent exploring each shelter. She expected wasps would spend more time exploring the shelters with the frass than they would the control shelters.

Featured scientist: Martha Weiss from Georgetown University. Written by Kylee Grenis.

Flesch–Kincaid Reading Grade Level = 9.6

Additional teacher resources related to this Data Nugget include:

YouTube videos of the silver-spotted skipper (Epargyreus clarus) “shooting its poop” (aka. ballistic defecation). These videos would be great to show in class after students have read the Research Background section to help engage them with the system.

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

SaveSaveSaveSave

SaveSave

Dangerous Aquatic Prey: Can Predators Adapt to Toxic Algae?

Figure 1: Scientist Finiguerra collecting copepods at the New Jersey experimental site.

Figure 1: Scientist Finiguerra collecting copepods at the New Jersey experimental site.

The activities are as follows:

Phytoplankton are microscopic algae that form the base of all aquatic food chains. While organisms can safely eat most phytoplankton, some produce toxins. When these toxic algae reach high population levels it is known as a toxic algal bloom. These blooms are occurring more and more often across the globe – a worrisome trend! Toxic algae poison animals that eat them, and in turn, humans that eat these animals. For example, clams and other shellfish filter out large quantities of the toxic algae, and the toxic cells accumulate in their tissues. If humans then eat these contaminated shellfish they can become very sick, and even die.

One reason the algae produce toxins is to reduce predation. However, if predators feed on toxic prey for many generations, the predator population may evolve resistance, by natural selection, to the toxic prey. In other words, the predators may adapt and would be able to eat lots of toxic prey without being poisoned. Copepods, small crustaceans and the most abundant animals in the world, are main consumers of toxic algae. Along the northeast coast of the US, there is a toxic phytoplankton species, Alexandrium fundyense, which produces very toxic blooms. Blooms of Alexandrium occur often in Maine, but are never found in New Jersey. Scientists wondered if populations of copepods that live Maine were better at coping with this toxic prey compared to copepods from New Jersey.

Figure 2: A photograph of a copepod (left) and the toxic alga Alexandrium sp. (right).

Figure 2: A photograph of a copepod (left) and the toxic alga Alexandrium sp. (right).

Scientists tested whether copepod populations that have a long history of exposure to toxic Alexandrium are adapted to this toxic prey. To do this, they raised copepods from Maine (long history of exposure to toxic Alexandrium) and New Jersey (no exposure to toxic Alexandrium) in the laboratory. They raised all the copepods under the same conditions. The copepods reproduced and several generations were born in the lab (a copepod generation is only about a month). This experimental design eliminated differences in environmental influences (temperature, salinity, etc.) from where the populations were originally from.

The scientists then measured how fast the copepods were able to produce eggs, also called their egg production rate. Egg production rate is an estimate of growth and indicates how well the copepods can perform in their environment. The copepods were given either a diet of toxic Alexandrium or another diet that was non-toxic. If the copepods from Maine produced more eggs while eating Alexandrium, this would be evidence that copepods have adapted to eating the toxic algae. The non-toxic diet was a control to make sure the copepods from Maine and New Jersey produced similar amounts of eggs while eating a good food source. For example, if the copepods from New Jersey always lay fewer eggs, regardless of good or bad food, then the control would show that. Without the control, it would be impossible to tell if a difference in egg production between copepod populations was due to the toxic food or something else.

Featured scientists: Michael Finiguerra and Hans Dam from University of Connecticut-Avery Point, and David Avery from the Maine Maritime Academy

Flesch–Kincaid Reading Grade Level = 10.6

There are three scientific papers associated with the data in this Data Nugget. The citations and PDFs of the papers are below. 

Colin, SP and HG Dam (2002) Latitudinal differentiation in the effects of the toxic dinoflagellate Alexandrium spp. on the feeding and reproduction of populations of the copepod Acartia hudsonicaHarmful Algae 1:113-125

Colin, SP and HG Dam (2004) Testing for resistance of pelagic marine copepods to a toxic dinoflagellate. Evolutionary Ecology 18:355-377

Colin, SP and HG Dam (2007) Comparison of the functional and numerical responses of resistant versus non-resistant populations of the copepod Acartia hudsonica fed the toxic dinoflagellate Alexandrium tamarense. Harmful Algae 6:875-882

Dangerously bold

An aquarium filled with young bluegill sunfish. Bluegills are a common type of fish that live in freshwater lakes in the eastern United States.

An aquarium filled with young bluegill sunfish. Bluegills are a common type of fish that live in freshwater lakes in the eastern United States.

The activities are as follows:

1

Just as each person has their own personality, animals in the same species can behave very different from one another! For example, pets like dogs have different personalities. Some have lots of energy, some are cuddly, and some like to be alone. Boldness is a behavior that describes whether or not an individual takes risks. Bold individuals take risks, while shy do not. The risks animals take have a big impact on their survival and the habitats they choose to search for food.

Bluegill sunfish are a type of fish that live in freshwater lakes and ponds across the world. Open water and cover are two habitats where young bluegill are found. The open water habitat in the center of the pond is the best place for bluegill to eat lots of food. However, the open water is risky and has very few plants or other places to hide. Predators can easily find and eat bluegill in the open water. The cover habitat at the edge of the pond has many plants and places to hide from predators, but it has less food that is best for bluegill to grow fast. Both habitats have costs and benefits – called a tradeoff.

To determine their personality, Melissa observed bluegill sunfish in the aquarium lab.

To determine their personality, Melissa observed bluegill sunfish in the aquarium lab.

Melissa is a scientist who is interested in whether differences in young bluegill behavior changes the habitats they choose to search for food. First, she looked at whether young bluegill have different personalities by bringing them into an aquarium lab and watching their behavior. She saw that just like in humans and dogs, bluegill sunfish had different personalities. Some bluegill took more risks and were bolder than others. Melissa wanted to know if these differences in behavior changed how the fish behaved back in the pond. She thought that bold fish would take more risks and use the open water habitat more than shy fish. Bold fish would then have more food and grow faster and larger. She thought that shy fish would play it safe and not take risks, so they would use the cover habitat. Shy fish would then eat less food and not be able to grow as large. Because the bold fish would be in the open water habitat, they might get eaten by predators more because shy fish would avoid predators. These differences in the habitats that the fish use would create a tradeoff based on personality.

Melissa designed a study to test the growth and survival of bold and shy fish. When she was watching the fish’s behavior in the lab, she determined if a fish was bold or shy. If a fish took the risk of leaving the safety of the vegetation in a tank so that it could eat food while there was a predator behind a mesh screen, they were called bold. If it did not eat, it was called shy. She marked each fish by clipping the right fin if it was bold or the left fin if it was shy. She placed 100 bold and 100 shy bluegill into an experimental pond with two largemouth bass (predators). The shy and bold fish started the experiment at similar lengths and weights. After two months, she drained the pond and found every bluegill that survived. She recorded survival and size (length and weight) for each fish and noted if it was bold or shy.

Featured scientist: Melissa Kjelvik from Michigan State University

Flesch–Kincaid Reading Grade Level = 7.3

Photo Jul 23, 5 41 38 PM

A view of the aquarium tank used to determine fish personality. A largemouth bass is placed to the left of the barrier, while 3 bluegill sunfish are placed to the right. If a sunfish swims out of the vegetation and eats a bloodworm dropped near the predator, it is considered bold.

A view of the aquarium tank used to determine fish personality. A largemouth bass is placed to the left of the barrier, while 3 bluegill sunfish are placed to the right. If a sunfish swims out of the vegetation and eats a bloodworm dropped near the predator, it is considered bold.

SaveSave

Average Rating