Deadly windows

A white-throated sparrow caught during the experiment. You can see the band on it’s leg, used to make sure they did not record the same bird more than once.

The activities are as follows:

Glass makes for a great windowpane because you can see right through it! However, the fact that windows are see-through makes them very dangerous for birds. Have you ever accidentally run into a glass door, or been confused by a tall mirror in a restaurant? Just like people, birds can mistake a see-through window or a mirrored pane for an opening to fly through or a place to get food, and will accidentally fly into them. These window collisions can hurt the bird, or even kill it. Window collisions kill nearly 1 billion birds every year!

Urban areas, with lots of houses and stores, have a lot of windows. Resident birds that live in the area may get to know these buildings well, and may learn to avoid the windows. However, not all the birds in an area live there year-round. There are also migrant birds that fly through urban areas during their fall migrations. They will use gardens and parks in urban areas to rest along their journeys to their winter southern homes. During the fall migration, people have noticed that it seems like more birds fly into windows. This may be because migrant birds are not familiar with the local buildings. While looking for food and places to sleep, migrant birds might have more trouble identifying windows and fly into them more often. However, it could also be that there are simply more window collisions in the fall because there are more birds in the area when migrant and resident birds co-occur in urban areas.

Researchers identify the species of each bird caught in one of the nets used in the study. They then place a metal bracelet on one leg so they will know if they catch the same bird again.

Natasha was visiting a friend who worked at a zoo when he told her about a problem they were having. For a few weeks in the fall, they would find dead birds under the windows, more than they would during the rest of the year. He wanted to figure out a way to prevent birds from hitting the exhibit windows. Natasha became interested in learning whether migrant birds were more likely to fly into windows than resident birds, or if the number of window collisions only increase in the fall because there are lots of birds around. To do this she would have to count the total number of birds in the area, and also the total number of birds that were killed in window collisions. To count the total number of birds in the area, Natasha hung nets that were about the same height as windows. When the birds got caught in the nets, Natasha could count and identify them. This data could then be used to calculate the proportion of migrants and residents flying at window-height. She put ten nets up once a week for four hours, over the course of 3 months, and checked them every 15 minutes for any birds who got caught.

Researcher identifying a yellow-rumped warbler, one of the birds captured in the net as part of the study.

Then, she also checked under the windows in the same area to see what birds were killed from window collisions. She checked the windows every morning and evening for the three months of the study. Different species of bird are migratory or resident in the area where Natasha did her study. Each bird caught in nets was examined to identify it to species using its feathers, which would tell us whether the bird was a migrant or a resident. The same was done for birds found dead below windows.

If window collisions are really more dangerous for migrants, she expected to see a higher proportion of migrants would fly into windows than were caught in the nets. But, if window collisions were in the same proportion as the birds caught in the nets, she would know that windows were just as dangerous for resident birds as for migrants.

Featured scientist: Natasha Hagemeyer from Old Dominion University

Flesch–Kincaid Reading Grade Level = 8.7

There is one scientific paper associated with the data in this Data Nugget. The citation and PDF of the paper is below:

Sticky situations: big and small animals with sticky feet

Travis in the lab measuring the stickiness of a gecko’s toe.

Travis in the lab measuring the stickiness of a gecko’s toe.

The activities are as follows:

Species are able to do so many amazing things, from birds soaring in the air, lizards hanging upside-down from ceilings, and trees growing hundreds of feet tall. The study of biomechanics looks at living things from an engineering point of view to study these amazing abilities and discover why species come in such a huge variety of shapes and sizes. Biomechanics can improve our understanding of how plants and animals have adapted to their environments. We can also take what we learn from biology and apply it to our own inventions in a process called biomimicry. Using this approach, scientists have built robotic jellyfish to survey the oceans, walking robots to help transport goods, and fabrics that repel stains like water rolling off a lotus leaf.

Travis studies biomechanics and is interested in the ability of some species to climb and stick to walls. Sticky, or adhesive, toe pads have evolved in many different kinds of animals, including insects, arachnids, reptiles, amphibians, and mammals. Some animals, like frogs, bats, and bugs use suction cups to hold up their weight. Others, like geckos, beetles, and spiders have toe pads covered in tiny, branched hairs. These hairs actually adhere to the wall! Electrons in the molecules that make up the hairs interact with electrons in the molecules of the surface they’re climbing on, creating a weak and temporary attraction between the hairs and the surface. These weak attractions are called van der Waals forces.

Travis catching lizards in the Dominican Republic.

Travis catching lizards in the Dominican Republic.

The heavier the animal, the more adhesion they will need to stick and support their mass. With a larger toe surface area, more hairs can come in contact with the climbing surface, or the bigger the suction cup can be. For tiny species like mites and flies, tiny toes can do the job. Each fly toe only has to be able to support a small amount of weight. But when looking at larger animals like geckos, their increased weight means they need much larger toe pads to support them.

When comparing large and small objects, the mass of large objects grows much faster then their surface area does. As a result, larger species have to support more mass per amount of toe area and likely need to have non-proportionally larger toes than those needed by lighter species. This results in geckos having some crazy looking feet! This relationship between mass and surface area led Travis to hypothesize that larger species have evolved non-proportionally larger toe pads, which would allow them to support their weight and stick to surfaces.

To investigate this idea, Travis looked at the data published in a paper by David Labonte and fellow scientists. In their paper they measured toe pad surface area and mass of individual animals from 17 orders (225 species) including insects, arachnids, reptiles, amphibians, and mammals. From their data, Travis calculated the average toe pad area and mass for each order.

Travis then plotted each order’s mass and toe pad area on logarithmic axes so it is easier to compare very small and very large values. Unlike a standard axis where the amount represented between tick marks is always the same, on logarithmic axes each tick mark increases by 10 times the previous value. For example, if the first tick represents 1.0, the second tick will be 10, and the next 100. As an example, look at the graphs below.

gecko-graph

The left plot shows hypothetical gecko species of different sizes, but with proportional toes. Their mass per toe pad area ratio (g/mm2) varies, with larger species having larger g/mm2 ratios. In this case, larger species have to support more mass per toe pad area. In the right plot, larger gecko species have disproportionally larger toes. These differences change each species’ mass per toe pad area ratios, so that all species, regardless of their size, have the same mass per toe pad area ratio.

Featured scientists: David Labonte, Christofer J. Clemente, Alex Dittrich, Chi-Yun Kuo, Alfred J. Crosby, Duncan J. Irschick, and Walter Federle. Written by: Travis Hagey

Data Nugget Flesch–Kincaid Reading Grade Level = 10.3

Scaling Up – Math Activity Flesch–Kincaid Reading Grade Level = 9.5

There is a scientific paper associated with the data in this Data Nugget. The data was used with permission from D. Labonte.

Labonte, D., Clemente, C.J., Dittrich, A., Kuo, C.Y., Crosby, A.J., Irschick, D.J. and Federle, W., 2016. Extreme positive allometry of animal adhesive pads and the size limits of adhesion-based climbing. Proceedings of the National Academy of Sciences, p.201519459.


dr-fowleriAbout Travis: Ever since Travis was a kid, he was interested in animals and wanted to be a paleontologist. He even had many dinosaur names memorized to back it up! In college he discovered evolutionary biology, which drove him to apply for graduate school and become a scientist. There, he fell in love with comparative biomechanics, which combines evolutionary biology and mechanical engineering. Today Travis studies geckos and their sticky toes that allow them to scale surfaces like glass windows and tree branches.

Are you my species?

Michael holding a male darter. The bright color patterns differ for each of the over 200 species. Photo by Tamra Mendelson.

Michael holding a male darter. The bright color patterns differ for each of the over 200 species. Photo by Tamra Mendelson.

The activities are as follows:

What is a species? The biological species concept says species are groups of organisms that can mate with each other, but do not reproduce with members of other such groups. But how do animals know who to choose as a mate and who is a member of their own species? One way is through communication. Animals collect information about each other and the rest of the world using multiple senses, including sight, sound, sonar, and smell. These signals may be used to figure out who would make a good mate and who is a member of the same species.

Michael snorkeling, looking for darters.

Michael snorkeling, looking for darters.

Michael is a scientist interested in studying how individuals communicate within and across the boundaries of species. He studies darters, a group of over 200 small fish species that live on the bottom of streams, rivers, and lakes. Michael first chose to study darter fish because the males in these species have bright color patterns during the breeding season. Female darters get to choose which males to mate with, and males fight with each other during the mating season. Females want to make sure they choose a member of their own species to mate with. Males want to make sure they only spend energy fighting off males of their own species, who are competing for the same females. What information do females and males use to guide their behavior, and how do they know which individuals are from their own species?

Across all darter species, there is a huge diversity of color patterns. Because only males are brightly colored, and there is such a diversity of colors and patterns, Michael wondered if male color patterns were used to communicate species identity during mating. Some darter species have color patterns that are very similar to those of other darter species. Perhaps, Michael thought, the boundaries of species are not as clear as described by the biological species concept. Some darter species may hybridize, or mate with members of a different species if their color patterns are very close. If color pattern serves as a signal to communicate darter species identity, then Michael predicted that species with similar male color patterns would hybridize and be more aggressive with each other than species with very different male color patterns.

Michael (right) in the field, collecting darters. Photo by Tamra Mendelson.

Michael (right) in the field, collecting darters. Photo by Tamra Mendelson.

Michael collected 8 pairs of darter species (16 species in all) from Alabama, Mississippi, Tennessee, Kentucky, South Carolina, and North Carolina and brought them all back to the lab. For each species pair, he put five males and five females of each species (20 fish total) in the same fish tank and observed their behavior for 5 hours. He did this 8 times, once for each species pair. During the 5 hour observation period, he recorded (1) how many times females mated with their own species or a different species, and (2) how many times males were aggressive to their own species or a different species.

Featured scientist: Michael Martin from the University of Maryland, Baltimore County

Flesch–Kincaid Reading Grade Level = 10.5

Videos showing darter behavior:

Darter species used in the experiment:

darters

When a species can’t stand the heat

An adult male tuatara. Photo by Scott Jarvie.

An adult male tuatara. Photo by Scott Jarvie.

The activities are as follows:

Tuatara are a unique species of reptile found only in New Zealand. While they look like lizards, they are actually in their own reptile group. Tuatara are the only species remaining on the planet from this lineage, one that dates back to the time of the dinosaurs! Similar to tortoises, they are extremely long-lived and can sometimes live over 100 years. Tuatara start reproducing when they are about 15-20 years old and they breed infrequently.

North Brother Island, one of the small New Zealand islands where tuatara are still found today.

North Brother Island, one of the small New Zealand islands where tuatara are still found today. Photo by Jo Monks.

The sex of tuatara is not determined by sex chromosomes (X or Y), as in humans. Instead, the temperature of the nest during egg development is the only factor that determines the sex of tuatara embryos. If the egg develops with a low temperature in the nest it will be female, but if it develops with higher temperatures it will be male. This process happens in many other species too, including some turtles, crocodiles, lizards, and fish. However, most species are the opposite of tuatara, and produce females at the warmest temperatures.

Today, tuatara face many challenges. Humans introduced new predators to the large North and South Islands of New Zealand. Tuatara used to live on these main islands, but predators led them to local extinction. Today they survive only on smaller offshore islands where they can escape predation. Because many of these islands are small, tuatara can have low population numbers that are very vulnerable to a variety of risk factors. One of the current challenges faced by these populations is climate change. Similar to the rest of the world, climate change is resulting in temperatures that are getting higher and higher in New Zealand, and the warm temperatures may impact tuatara reproduction.

Kristine collecting data on a tuatara in the field.

Kristine collecting data on a tuatara in the field. Photo by Sue Keall.

North Brother Island has a small population of tuatara (350-500 individuals) that has been studied for decades. Each tuatara has been marked with a microchip (like the ones used on pet dogs and cats), which allows scientists to identify and measure the same individuals repeatedly across years. In the 1990s, a group of scientists studying tuatara on this island noticed that there were more males than females (60% males). The scientists started collecting data on the number of males and females so they could use long-term data to track whether the sex ratio, or the ratio of males and females in the population, became more balanced or became even more male-biased over time. Because tuatara are long-lived and breed infrequently, the scientists needed to follow the sex ratio for many years to be sure they were capturing a true shift in the sexes over time.

In 2012, Kristine and her colleagues decided to use this long-term data to see if the sex ratio is changing as the world warms. Since the temperature of the nest determines sex, and temperature is going up due to climate change, they predicted that there would be a greater proportion of males in the population over time. This would be reflected in an unbalanced sex ratio that is moving further and further away from 50% males and 50% females. The sex ratio is important because when there are fewer females in a population, there are fewer individuals that lay eggs and produce future offspring. Generally, a population that is highly male-biased will have lower reproduction rates than a population that is more balanced, or is female-biased.

Graph showing mean annual temperatures for New Zealand, made by the National Institute of Water and Atmospheric Research. The y-axis represents the difference in that year’s mean temperature from the average temperature from 1981-2010. Red bars mean the year was warmer than average, and blue mean it was colder. The black line is the trend from 1909 to 2015 (0.92 ± 0.26°C/100 years).

Graph showing mean annual temperatures for New Zealand, made by the National Institute of Water and Atmospheric Research. The y-axis represents the difference in that year’s mean temperature from the average temperature from 1981-2010. Red bars mean the year was warmer than average, and blue mean it was colder. The black line is the trend from 1909 to 2015 (0.92 ± 0.26°C/100 years).

Featured scientists: Kristine Grayson from University of Richmond, Nicola Mitchell from University of Western Australia, and Nicola Nelson from Victoria University of Wellington

Flesch–Kincaid Reading Grade Level = 11.5

Additional teacher resources related to this Data Nugget:


kgAbout Kristine: Kristine L. Grayson received her Ph.D. in 2010 from the University of Virginia under the mentorship of Dr. Henry Wilbur. Her thesis used mark-recapture methods to examine migration behavior in a pond-breeding amphibian. She received an NSF International Research Fellowship to Victoria University of Wellington in New Zealand to conduct research on sex-ratio bias under climate change in tuatara, an endemic reptile. One of Kristine’s claims to fame is capturing the state record holding snapping turtle for North Carolina – 52 pounds! In addition to her passion for amphibian and reptile conservation, Kristine’s current work also examines the spread potential of gypsy moth, an invasive forest pest in North America. Kristine currently is an Assistant Professor in the Biology Department at University of Richmond.

Finding Mr. Right

Mountain chickadee, photo by Vladimir Pravosudov

Mountain chickadee, photo by Vladimir Pravosudov

The activities are as follows:

Depending on where they live, animals can face a variety of challenges from the environment. For example, animal species that live in cold environments may have adaptive traits that help them survive and reproduce under those conditions, such as thick fur or antifreeze in their blood. Animals may also have adaptive behaviors that help them deal with the environment, such as storing food for periods when it is scarce, or hibernating during times of the year where conditions are most unfavorable. These adaptations are usually consistently seen in all individuals within a species. However, sometimes populations of the same species may be exposed to different conditions depending on where they live. The idea that populations of the same species have evolved as a result of certain aspects of their environment is called local adaptation.

Mountain chickadees are small birds that live in the mountains of western North America. These birds do not migrate to warmer locations like many other bird species; they remain in the same location all year long. To deal with living in a harsh environment during the winter, mountain chickadees store large amounts of food throughout the forest during the summer and fall. They eat this food in the winter when very little food is available. There are some populations of the species that live near the tops of mountains, and some that live at lower elevations. Birds at higher elevations experience harsher winter conditions (lower temperature, more snow) compared to birds living at lower elevations. This means that birds higher in the mountains depend more on their stored food to survive winter.

Carrie conducting field research in winter, photo by Vladimir Pravosudov

Carrie conducting field research in winter, photo by Vladimir Pravosudov

Carrie studies mountain chickadees in California. Based on previous research that was done in the lab she works in, she learned these birds have excellent spatial memory, or the ability to recall locations or navigate back to a particular place. This type of memory makes it easier for the mountain chickadees to find the food they stored. Carrie’s lab colleagues previously found that populations of birds from high elevations have much better spatial memory compared to low elevation birds. Mountain chickadees also display aggressive behaviors, and fight to defend resources including territories, food, or mates. Previous work Carrie and her lab mate conducted found that male birds from low elevations are socially dominant over male birds from high elevations, meaning they are more likely to win in a fight over resources. Taken together, these studies suggest that birds from high elevations would likely do poorly at low elevations due to their lower dominance status, but low elevation birds would likely do poorly at high elevations with harsher winter conditions due to their inferior memory for finding stored food items. These populations of birds are likely locally adapted – individuals from either population would likely be more successful in their own environments compared to the other.

In this species, females choose which males they will mate with. Carrie predicted females would prefer to mate with males that are from the same elevation. She thought this because males from the same elevation as the females may be best adapted to the location where the female lives. This means that when the female lays her eggs, her offspring will likely also inherit traits that are well suited for that environment. If she mates with males that match her environment, she is setting up her offspring to be more successful and have higher survival where they will live. This process of females choosing males that are from the same environment could contribute to the populations becoming more and more distinct. Offspring born in the high mountains will continue to inherit genes for good spatial memory, and those born at high elevations will inherit genes that allow them to be socially dominant.

Mountain chickadee, photo by Vladimir Pravosudov

Mountain chickadee, photo by Vladimir Pravosudov

To test whether female mountain chickadees contribute to local adaptation by choosing and mating with males from their own elevation, Carrie brought high and low elevation males and females into the lab. Carrie made sure that the conditions in the lab were similar to the light conditions in the spring when the birds mate (14 hours of light, 10 hours of dark). Once a female was ready to be tested, she was given time to spend time with both males in a cage that is called a two-choice testing chamber. On one side of the testing chamber was a male from a low elevation population, and on the other side was a male from a high elevation population. Each female could fly between the two sides of the testing chamber, allowing her to “choose” which male she preferred to spend time close to (measured in seconds [s]). There was a cardboard divider in the middle of the cage with a small hole cut into it. This allowed the female to sit on the middle of the cardboard, which was not counted as preference time for either male. Females from both high and low elevation populations were tested in the same way. The female bird’s preference was determined by comparing the amount of time the female spent on either side of the cage. More time spent on the side of the cage by one male over the other indicates a preference for that male.

Watch a video of one of the experimental trials:

Featured scientist: Carrie Branch from University of Nevada Reno

Flesch–Kincaid Reading Grade Level = 11.5

Additional teacher resources related to this Data Nugget include:


carrie-branchAbout Carrie: I have been interested in animal behavior and behavioral ecology since my second year in college at the University of Tennessee. I am primarily interested in how variation in ecology and environment affect communication and signaling in birds. I have also studied various types of memory and am interested in how animals learn and use information depending on how their environment varies over space and time. I am currently working on my PhD in Ecology, Evolution, and Conservation Biology at the University of Nevada Reno and once I finish I hope to become a professor at a university so that I can continue to conduct research and teach students about animal behavior. In my spare time I love hiking with my friends and dogs, and watching comedies!

Why so blue? The determinants of color pattern in killifish, Part II

In Part 1, you examined the effects of genetics and environment on anal fin color in male bluefin killifish. The data from Becky’s experiment showed that both genetics and environment work together to determine whether male offspring had blue, yellow, or red anal fins. You will now examine how the father’s genetics, specifically their fin color pattern, affects anal fin color in their sons. When we factor in the genetics of the father, and not just the population he came from, does this influence our interpretation of the data?

The color polymorphism in bluefin killifish – males display anal fins in blue, red, or yellow.

The activities are as follows:

For her experiment, Becky collected male and female fish from both a swamp (26 Mile Bend) and a spring (Wakulla) population. Most of the males in the swamp have blue anal fins, but some have red or yellow. Most of the males from the spring have red or yellow anal fins, but some have blue. Becky decided to add data about the father’s fin color pattern into her existing analysis from Part 1 to see how it affected her interpretation of the results.

In Part 1, Becky was looking at the genetics from the population level. Looking at the data this way, we saw parents from the 26 Mile Bend swamp population were more likely to have sons with blue anal fins than parents from the Wakulla spring. Parents from the 26 Mile Bend were also much more likely to have sons with higher levels of plasticity, meaning they responded more to the environment they were raised in. This means there was a big difference between the proportion sons with blue anal fins in the clear and brown water treatments.

Bringing in the color pattern of the fathers now allows Becky to look at the genetics from both the population and the individual level. From both the swamp and spring population, Becky collected males of all colors. Becky measured the color pattern of the fathers and recorded the color of their anal fins and the rear part of their dorsal fins. She used males that were red on the rear portion of the dorsal fin with a blue anal fin (rb), males that were red on both fins (rr), males that were yellow on both fins (yy), and males that were yellow on the rear portion of the dorsal fin with blue a blue anal fin (yb).

colormorph

She randomly assigned each father’s sons into one of the water treatments, either clear or brown water. Once the sons developed their fin colors, she recorded the anal fin color. This experimental design allowed her to test whether sons responded differently to the treatment depending on the genetics of their father. She thought that the anal fin color of the sons would be inherited genetically from the father, but would also respond plastically to the environment they were raised in. She predicted fathers with blue anal fins would be more likely to have sons with blue anal fins, especially if they were raised in the brown water treatment. She also predicted that fathers with red and yellow anal fins could have sons with blue anal fins if they were raised in the brown water treatment, but not as many as the blue fathers.

Featured scientist: Becky Fuller from The University of Illinois

Flesch–Kincaid Reading Grade Level = 10.9


About Becky: I consider myself to be an evolutionary biologist who studies fishes. I grew up in a small town riding horses in 4-H and working in a veterinary clinic. As an undergraduate at the University of Nebraska at Lincoln, I was interested in biology and considering either medical or veterinary school. Two things led to me research in ecology and evolution. In the summer of 1991, I was taking courses at Cedar Point Biological Field Station which was run by the University of Nebraska. I met Dr. Anthony Joern (Tony) who was studying grasshopper community ecology. Tony hired me onto his field crew that summer after the courses were finished. I went on to do an undergraduate thesis under Tony’s mentorship where I studied predation on grasshoppers. I caught the “science bug” and never looked back. Following my undergraduate work, I went to Uppsala University in Sweden on a Fulbright Scholarship. Here, I developed my love for fish and aquatics. I worked with Dr. Anders Berglund on pipefish in a fjord on the west coast of Sweden. Since then, I have had many wonderful advisers, instructors, mentors, and collaborators who have helped me develop skills along the numerous fronts required for a successful career in science. I consider myself very fortunate to have a job where I can do science and teach young, enthusiastic undergraduates.

Why so blue? The determinants of color pattern in killifish, Part I

The color polymorphism in bluefin killifish – males display anal fins in blue, red, or yellow.

The activities are as follows:

In nature, animals can be found in a dazzling display of different colors and patterns. Color patterns serve as signals to members of the animal’s own species, or to other species. They can be used to attract mates, camouflage with the environment, or warn predators to stay away. When looking at the diversity of colors found in nature, you may wonder, why do animals have the color patterns they do? One way to study this question is to look at a single species that has individuals of different colors. This variation can be used to uncover the mechanisms that determine color.

The bluefin killifish is a freshwater species that is found mostly in Florida. They are found in two main habitats, springs and swamps. An intriguing aspect of this species is that male bluefin killifish are brightly colored with many different color patterns. The brightest part of the fish is the anal fin, which is found on the bottom of the fish by the tail. Some males have red anal fins, some have yellow anal fins, and others have blue anal fins. This variation in color is called a polymorphism, meaning that in a species there are multiple forms of a single trait. In a single spring or swamp you may see all three colors!

Becky in the field, with her colleague Katy, collecting fish in 26 Mile Bend Swamp.

Becky in the field, with her colleague Katy, collecting fish in 26 Mile Bend Swamp.

Becky is a biologist studying bluefin killifish. One day, while out snorkeling for her research, she noticed an interesting pattern. She observed that there were differences in the polymorphism depending on whether she was in a spring or swamp. Springs have crystal clear water that can appear blue-tinted. Becky noticed that most of the males in springs had either red or yellow anal fins. Swamps have brown water, the color of iced tea, due to the dissolved plant materials in the water. Becky noticed that most of the males in swamps had blue anal fins. After noticing this pattern she wanted to find out why this variation in color existed. Becky came up with two possible explanations. She thought males in swamps might be more likely to be blue (1) because of the genes they inherit from their parents, or (2) because individual color is responding to environmental conditions. This second case, where the expression of a trait is directly influenced by the environment that an individual experiences, is known as phenotypic plasticity.

Becky had to design an experiment that could tease apart whether genes, plasticity, or both were responsible for male anal fin color. She did this by collecting male and female fish from the two habitat types, breeding them, and raising their offspring in clear or brown water. If a father’s genes are responsible for anal fin color in their sons, then fathers from swamps would be more likely to leave behind blue sons. If environmental conditions determine the color of sons, then sons raised in brown water will be blue, regardless of the population origin of their father.

Becky’s family helping her out in the field!

Becky’s family helping her out in the field!

Becky and her colleagues collected fish from two populations in the wild – Wakulla Spring, and 26 Mile Bend Swamp – and brought them into the lab. These two populations represent the genetic stocks for the experiment. Fish from Wakulla are more closely related to each other than they are to fish from 26 Mile Bend. In the lab, they mated female fish with male fish from the same population: females from Wakulla mated with males from Wakulla, and females from 26 MB mated with males from 26 MB. The female fish then laid eggs, and after the offspring hatched from their eggs, half were put into tanks with clear water (which mimics spring conditions) and half in tanks with brown water (which mimics swamp conditions). For the brown water treatment, Becky colored the water using ‘Instant, De-caffeinated, No-Sugar, No-Lemon’ tea. They raised the fish to adulthood (3-6 months) so they could determine their sex and the color of the son’s anal fins. Becky then counted the total number of male offspring, and the number of male offspring that had blue anal fins. She used these numbers to calculate the proportion of sons that had blue anal fins in each treatment.

Featured scientist: Becky Fuller from The University of Illinois

Flesch–Kincaid Reading Grade Level = 9.4


About Becky: I consider myself to be an evolutionary biologist who studies fishes. I grew up in a small town riding horses in 4-H and working in a veterinary clinic. As an undergraduate at the University of Nebraska at Lincoln, I was interested in biology and considering either medical or veterinary school. Two things led to me research in ecology and evolution. In the summer of 1991, I was taking courses at Cedar Point Biological Field Station which was run by the University of Nebraska. I met Dr. Anthony Joern (Tony) who was studying grasshopper community ecology. Tony hired me onto his field crew that summer after the courses were finished. I went on to do an undergraduate thesis under Tony’s mentorship where I studied predation on grasshoppers. I caught the “science bug” and never looked back. Following my undergraduate work, I went to Uppsala University in Sweden on a Fulbright Scholarship. Here, I developed my love for fish and aquatics. I worked with Dr. Anders Berglund on pipefish in a fjord on the west coast of Sweden. Since then, I have had many wonderful advisers, instructors, mentors, and collaborators who have helped me develop skills along the numerous fronts required for a successful career in science. I consider myself very fortunate to have a job where I can do science and teach young, enthusiastic undergraduates.

Bon Appétit! Why do male crickets feed females during courtship?

Mating pair of Hawaiian swordtail cricket with macrospermatophore on the male (left). The male and female (right) are marked with paint pens for individual identification.

Mating pair of Hawaiian swordtail cricket with macrospermatophore on the male (left). The male and female (right) are marked with paint pens for individual identification.

The activities are as follows:

In many species of insects and spiders, males provide females with gifts of food during courtship and mating. This is called nuptial feeding. These offerings are eaten by the female and can take many forms, including prey items the male captured, substances produced by the male, or parts from the male’s body. In extreme cases the female eats the male’s entire body after mating! Clearly these gifts can cost the male a lot, including time and energy, and sometimes even their lives.

So why do males give these gifts? There are two main hypotheses explaining why nuptial feeding has evolved in so many different species. First, giving a gift may attract a female and improve a male’s chance of getting to mate with her, or of fathering her young. This is known as the mating effort hypothesis. Second, giving a gift may provide the female with the energy and nutrients she needs to produce young. The gift helps the female have more, or healthier, offspring. This is known as the paternal investment hypothesis. These two hypotheses are not mutually exclusive – meaning, for any given species, both mechanisms could be operating, or just one, or neither.

Biz is a scientist who studies nuptial gifts, and he chose to work with the Hawaiian swordtail cricket, Laupala cerasina. He chose this species because it uses a particularly interesting example of nuptial feeding. In most other cricket species, the male provides the female with a single package of sperm, called a spermatophore. After sperm transfer, the female removes the spermatophore from her genitalia and eats it. However, in the Hawaiian swordtail cricket, males produce not just one but a whole bunch of spermatophores over the course of a single mating. Most of these are smaller, and contain no sperm – these are called “micros”. Only the last and largest spermatophore to be transferred, called the “macro” actually contains sperm. The number of micros that a male gives changes from mating to mating.

From some of his previous research, and from reading papers written by other scientists, Biz learned that micros increase the chance that a male’s sperm will fertilize some of the female’s eggs. Also, the more micros the male gives, the more of the female’s offspring he will father. This research supports the mating effort hypothesis for the Hawaiian swordtail cricket. Knowing this, Biz wanted to test the paternal investment hypothesis as well. He wanted to know whether the “micro” nuptial gifts help females lay more eggs and/or help more of those eggs hatch into offspring.

Biz used two experiments to test the paternal investment hypothesis. In the first experiment, 20 females and 20 males were kept in a large cage outside in the Hawaiian rainforest. The crickets were allowed to mate as many times as they wanted for six weeks. In the second experiment, 4 females and 4 males were kept in cages inside in a lab. Females were allowed to mate with up to 3 different males, and were then moved to a new cage to prevent them from mating with the same male more than once. In both experiments Biz observed all matings. He recorded the number of microspermatophores transferred during each mating and the number of eggs laid. If females that received a greater number of total micros over the course of all matings produced more eggs, or if their eggs had a higher rate of hatching, then the paternal investment hypothesis would be supported.

Featured scientist: Biz Turnell from Cornell University & Dresden University of Technology

Flesch–Kincaid Reading Grade Level = 8.9

Additional teacher resources related to this Data Nugget include:

Raising Nemo: Parental care in the clown anemonefish

Clown anemonefish caring for their eggs.

Clown anemonefish caring for their eggs.

The activities are as follows:

When animals are born, some offspring are able to survive on their own, while others rely on parental care. Parental care can take many forms. One or both parents might help raise the young, or in some species other members of the group may help them out. The more time and energy the parents invest, the more likely it is that their offspring will survive. However, parental care is costly for the parents. When a parent invests time, energy, and resources in their young, they are unable to invest as much in other activities, like finding food for themselves. This results in a tradeoff, or a situation where there are costs and benefits to the decisions that must be made. Parents must balance their time between caring for their offspring and other activities.

Environmental conditions may change the severity of the tradeoff between parental care and other activities. For example, if there is a lot of food available, parents may spend more time tending to their young because finding food for themselves takes less time and energy. Based on this tradeoff in how parents spend their time, scientists wonder if parents adjust their parental care strategies in response to environmental changes.

Photo of Tina (left) with other members of her lab. The glowing blue tanks around them all contain anemonefish!

Photo of Tina (left) with other members of her lab. The glowing blue tanks around them all contain anemonefish!

Tina is a scientist studying the clown anemonefish (Amphiprion percula). She is interested in how parental care in this species changes in response to the environment. She chose to study anemonefish because they use an interesting system to take care of their young, and because the environment is always changing in the coral reefs where they live. Anemonefish form monogamous pairs and live in groups of up to six individuals. The largest female is in charge of the group. Only the largest male and female get to mate and take care of the young. Both parents care for eggs by tending them, mouthing the eggs to clean the nest and remove dead eggs, and fanning eggs with their fins to oxygenate them. A single pair may breed together tens or even hundreds of times over their lifetimes. But here is the crazy part – anemonefish can change their sex! If the largest female dies, the largest male changes to female, and the next largest fish in line becomes the new breeding male. That means that a single parent may have the opportunity to be a mother and a father during its lifetime.

Parents will fan the eggs to increase oxygen by the nest, or mouth them to remove dead eggs and clean the nest.

Parents will fan the eggs to increase oxygen by the nest, or mouth them to remove dead eggs and clean the nest.

On the reef, anemonefish groups also experience shifts in how much food is available. In years with lots of food, the breeding pair has lots of young, and in years with little food they do not breed as often. Tina presumed that food availability determines how much time and energy the parents invest in parental care behaviors. She collected data from 20 breeding pairs of fish, 10 of which she gave half rations of food, and 10 of which she gave full rations. The experiment ran for six lunar months. Every time a pair laid a clutch of eggs, Tina waited 7 days and then took a 15-minute video of the parents and their nest. She watched the videos and measured three parental care behaviors: mouthing, fanning, and total time spent tending for both males and females. Some pairs laid eggs more than once, so she averaged these behaviors across the six months of the experiment. Tina predicted that parents fed a full ration would perform more parental care behaviors, and for a longer amount of time, than parents fed a half ration.

Watch videos of the experimental trials, demonstrating the mouthing and fanning behaviors:

Featured scientist: Tina Barbasch from Boston University

Flesch–Kincaid Reading Grade Level = 9.4


barbasch_photoAbout Tina: I first became interested in science catching frogs and snakes in my backyard in Ithaca, NY. This inspired me to major in Biology at Cornell University, located in my hometown. As an undergraduate, I studied male competition and sperm allocation in the local spotted salamander, Ambystoma maculatum. After graduating, I joined the Peace Corps and spent 2 years in Morocco teaching environmental education and 6 months in Liberia teaching high school chemistry. As a PhD student in the Buston Lab, I study how parents negotiate over parental care in my study system the clownfish, Amphiprion percula, otherwise known as Nemo.

How do brain chemicals influence who wins a fight?

fighting-fly-360wThe activities are as follows:

In nature, animals compete for resources. These resources include space, food, and mates. Animals use aggression as a way to capture or defend these resources, which can improve their chances of survival and mating. Aggression is a forceful behavior meant to overpower opponents that are competing for the same resource. The outcome (victory or defeat) depends on several factors. In insects, the bigger individuals often win. However, if two opponents are the same size, other factors can influence outcomes. For example, an individual with more experience may defeat an individual with less experience. Also individuals that are fighting to gain something necessary for their survival have a strong drive, or motivation, to defeat other individuals.

Researchers Andrew, Ken, and John study how the brain works to regulate behavior when motivation is present. They wanted to know if specific chemicals in the brain influenced the outcome of a physically aggressive competition. Andrew, Ken, and John read a lot papers written by other scientists, and learned that there was a chemical that played an important role in regulating aggressive behavior. This chemical compound, called serotonin is found in the brains of all animals, including humans. Even a small amount of this chemical can make a big impact on aggressive behavior, and perhaps the outcome of competition.

The researchers decided to do an experiment to test what happens with increasing serotonin levels in the brain. They used stalk-eyed flies in their experiment. Stalk-eyed flies have eyes on the ends of stalks that stick out from the sides of their heads. They thought that brain serotonin levels in stalk-eyed flies would influence their aggressive behaviors in battle and therefore impact the outcome of competition. If their hypothesis is true, they predicted that increasing the brain serotonin in a stalk-eyed fly would make it more likely to use aggressive behaviors, and flies that used more aggressive behaviors would be more likely to win. Battling flies use high-intensity aggressive attacks like jumping on or striking an opponent. They also use less aggressive behaviors like flexing their front legs or rearing up on their hind legs.

Two stalk-eyed flies rearing/extending forearms in battle. Photo credit: Sam Cotton.

Two stalk-eyed flies rearing/extending forearms in battle. Photo credit: Sam Cotton.

To test their hypothesis, the researchers set up a fair test. A fair test is a way to control an experiment by only changing one piece of the experiment at a time. By changing only one variable, scientists can determine if that change caused the differences they see. Since larger flies tend to win fights, the flies were all matched up with another fly that was the same size. This acted as an experimental control for size, and made it possible to look at only the impact of serotonin levels on aggression. The scientists also controlled for the age of the flies and made sure they had a similar environment since the time they were born. The experiment had 20 trials with a different pair of flies in each. In each trial, one fly received corn mixed with a dose of serotonin, while another fly received plain corn as a control. That way, both flies received corn to eat, but only one received serotonin.

The two flies were then placed in a fighting arena and starved for 12 hours to increase their motivation to fight over food. Next, food was placed in the center of the arena, but only enough for one fly! The researchers observed the flies, recording various behaviors of each opponent. They recorded three types of behaviors. High intensity behaviors were when the fighting flies touched one another. Low-intensity behaviors were when the flies did not come in contact with each other, for example jump attacks, swipes, and lunges. The last behavior type was retreating from the fight. Flies that retreated fewer times than their opponent were declared the winners. After the battles, the researchers killed the flies and collected their brains. They then measured the concentration of serotonin in each fly’s brain.

Featured scientists: Andrew Bubak and John Swallow from the University of Colorado at Denver, and Kenneth Renner from the University of South Dakota

Flesch–Kincaid Reading Grade Level = 9.2

There is a scientific paper associated with the data in this Data Nugget. The citation and PDF for the paper is below.

Bubak, A.N., K.J. Renner, and J.G. Swallow. 2014. Heightened serotonin influences contest outcome and enhances expression of high-intensity aggressive behaviors. Behavioral Brain Research 259: 137-142.

An article written about the research in this Data Nugget: John Swallow: Co-authors study on insect aggression and neurochemistry

Videos of a experimental trial – two stalk eyed flies battling in the fighting arena. The video was filmed during the experiment by the researchers listed in this Data Nugget!

Video showing how the long eyestalks of males form!