Nitrate: Good for plants, bad for drinking water

Evelyn is a scientist at the University of Minnesota. She studies nitrate pollution and how growing perennial crops may prevent it from entering our drinking water.

The activities are as follows:

Nitrogen is the most abundant element in our atmosphere. All living things need nitrogen to live and grow, but plants and animals can’t use the atmospheric form. Instead, many plants extract nitrogen from the soil and in the case of crops, we supply nitrogen through fertilizer, in a form called nitrate.

Nitrate dissolves well in water. This helps make it easy for plants to use, but it can also end up in rivers and groundwater. Groundwater with just 10 milligrams of nitrate per liter is not safe to drink because it can lead to a higher risk of cancer and birth defects. It is really expensive to remove nitrate from drinking water. Towns whose groundwater is contaminated must either pay to remove it or find a new drinking water source. Virtually all nitrate pollution comes from fertilizers used on crops, so one way to address this problem is to change the way we farm.

Annual plants live for just one season and typically have smaller shallower root systems than perennial plants, which live for multiple seasons. Most farmland grows annuals like corn and soybeans, but we get some of our food from perennials like apples, hazelnuts, and raspberries. Perennials stay in the ground all year and start growing right away in the spring before annual crops are even planted. Perennial grasses are particularly good at growing deep roots and taking up lots of nitrate from the soil. If we could produce more food from perennial plants instead of annual plants, crops may absorb enough nitrate to prevent it from getting into our drinking water.

For twenty years, researchers at The Land Institute in Kansas and at the University of Minnesota have been working on a new perennial grain crop called Kernza®, the seeds from a plant called intermediate wheatgrass. Kernza® can be used like wheat or rye, but it has a larger, deeper root system than regular annual wheat. Perennial plants’ deep roots are really good at absorbing dissolved nitrate in soil, so scientists wanted to study Kernza® in the field to see if it would prevent nitrate getting into groundwater.

Evelyn is one of these researchers. She grew up in Minneapolis, Minnesota and as a high school student, she was surprised to learn that agriculture has a huge impact on soil and water quality, wildlife habitat, and biodiversity. She wanted to help protect the environment, so she studied Food Systems at the University of Minnesota. A few years later, she joined a project that involved planting Kernza® in rural areas to prevent and reduce nitrate contamination of drinking water. Farmers, city officials, water managers, and scientists worked together to find solutions. This project inspired Evelyn to study Kernza® and nitrate for her master’s degree.

In her experiment, Evelyn planted plots of Kernza® (foreground) and plots with a corn-soybean rotation (background). This photo was taken in a corn year. Lysimeters are used to collect groundwater samples. The white posts are holding up the lysimeter sampling tubes.

To see if Kernza® helped absorb more nitrate from soil than annual crops, Evelyn and her colleagues ran an experiment. They planted plots of Kernza® and other plots that rotated between corn and soybean every year. Plots with Kernza® and corn were fertilized with nitrogen. Soybean plots were not fertilized.

In the plots, they installed lysimeters: long tubes that go down several feet to collect soil water from below where most plant roots can reach it. Soil water is the water that sits between soil particles. It can be taken up by plant roots or trickle down into the groundwater that is used for drinking wells. Once it moves deeper than a plant’s roots, it can’t be taken up and is very likely to reach the groundwater. Evelyn took water samples from the lysimeters every ten days and analyzed them for nitrate concentration.  If more nitrate is found in soil water under corn and soybean plots than Kernza®, this would be good evidence that Kernza® takes up more nitrate and helps protect groundwater.

Featured scientist: Evelyn Reilly (she/her) from University of Minnesota

Flesch–Kincaid Reading Grade Level = 10.9

Salty sediments? What bacteria have to say about chloride pollution

Lexi taking water quality measurements at Cedar Creek in Cedarburg, WI.

The activities are as follows:

In snowy climates, salt is applied to roads to help keep them safe during the winter. Over time, salt – in the form of chloride – accumulates in snowbanks. Once temperatures begin to warm in the spring, the snow melts and carries chloride to freshwater lakes, streams, and rivers. This runoff can quickly increase the salt concentration in a body of water. 

In large amounts, salt in the water is harmful to aquatic organisms like fish, frogs, and invertebrates. However, there are some species that thrive with lots of salt. Salt-loving bacteria, also known as halophiles, grow in extreme salty environments, like the ocean. Unlike other bacteria and organisms that cannot tolerate high salinity, halophiles use the salt in the environment for their day-to-day cellular activities. 

Lexi is a freshwater scientist who is interested in learning more about how ecosystems respond to this seasonal surge of chloride in road salts. She thought that there may be enough chloride from the road salt after snowmelt to change the bacteria community living in the sediment. More salt would support halophiles and likely harm the species that cannot tolerate a lot of salt. 

By taking a water sample and measuring the chloride concentration, we can see a snapshot in time of how toxic the levels are to organisms. However, the types of bacteria in sediments take a while to change. Halophiles may be able to tell us a long-term story of how aquatic organisms respond to chloride pollution. Lexi’s main goal is to use the presence of halophiles as a measure of how much chloride has impacted the health and water quality of river or stream ecosystems. This biological tool could also help cities identify areas that may be getting salted beyond what is necessary to keep roads safe.

Lexi expected that there would be few, or maybe no, halophiles in rural areas where there are not many roads. She also thought halophiles would be widespread in urban environments where there are many roads. Because salt impacts the streams year after year, she expected that halophiles would become permanent members of the microbial community and increase in winter and spring. Therefore, she also wanted to track whether halophiles remain in the sediment throughout the year, increasing in numbers when salt levels become high. 

She began to sample sediments from two different rivers in Southeastern Wisconsin. The urban Kinnickinnic River site is in Milwaukee, WI, and the Menomonee River site is in a rural environment outside of the city. She selected these sites because they offer a good comparison. Because there are more roads, and thus saltier snowmelt, the Kinnickinnic site in the city should have higher chloride concentrations than the Menomonee site. 

When visiting her sites throughout the year, Lexi collected multiple water and sediment samples. Every time she visited, she also recorded important water quality characteristics such as pH, conductivity, and temperature of the water. She then brought the samples to the laboratory and analyzed each for its chloride concentration. To measure the quantity of halophiles in the sediment, Lexi used a process where the sediment is shaken in water to separate the bacteria from the sediment and suspend them in the water. Samples from the water were then plated on a growth medium that contained a very high salt concentration. Because the growth medium was so salty, Lexi knew that if bacteria colonies grew on the plate, they would most likely be halophiles because most bacteria do not thrive in salty environments. Lexi counted the number of bacteria colonies that grew on the plates for each sample she had collected.

Featured scientist: Lexi Passante from the University of Wisconsin-Milwaukee

Flesch–Kincaid Reading Grade Level = 12.0

Some videos about Lexi and her research:

Additional teacher resources related to this Data Nugget:

Spiders under the influence

Field picture of an urban web. Dark paper is used to make the web more visible for data collection

The activities are as follows:

People use pharmaceutical drugs, personal care products, and other chemicals on a daily basis. For example, we take medicine when we are sick to feel better, and use perfumes and cologne to make ourselves smell good. After we use these chemicals, where do they go? Often, they get washed down our drains and end up in local waterways. Even our trash can contain these harmful chemicals. For example, when coffee grounds are thrown into the trash, caffeine gets washed into our waterways.

Animals in waterways, like insects, live with these chemicals every day. Many insects are born and grow in the water, absorbing the drugs over their lifetime. As predators eat the insects, the chemicals are passed on, working their way through the food web. For example, spiders living along riverbanks feed off aquatic insects and absorb the drugs from their prey.

Just as chemicals change human behavior, they change spider behavior as well! Effects of drugs on spiders have been studied since the 1940s. Dr. Peter Witt first discovered that chemicals change spider web construction. Peter gave caffeine, and a few other drugs, to spiders to see if they would build their webs during the day instead of at night, which is when they usually work. After giving his test spiders some of the drugs, the spiders still created their webs at night. However, he noticed something unexpected – the web structure of spiders on drugs was completely different from normal webs. The webs were different sizes and had more spacing between each thread. Normal webs help spiders to easily catch prey. Irregularly shaped webs were not good at catching prey because insects could fly right through the large spaces. After his study, Peter knew that drugs were bad for spiders.

Chris (they/them), a current resident of Baltimore and a spider enthusiast, lives in a watershed that is affected by chemical pollution. They wanted to build on Peter’s research by looking at spider webs in the wild instead of in the lab. Chris knew that many types of spiders live near streams and are exposed to toxins through the prey they eat. Chris wanted to compare the effects of the chemicals on spiders in rural and urban environments. By comparing spider webs in these two habitats, they could see how changed the webs are and infer how many chemicals are in the waterways.

Chris worked with Aaron, a local high school teacher, to do this research. They collected images of spiderwebs in areas around Baltimore. They chose two sites: Baisman Run, a rural site far from the city, and Gwynns Run, an urban site close to the city. Chris traveled to the sites and took pictures of eight spiderwebs at each location. Chris and Aaron expected that urban streams would have higher concentrations of chemicals than rural areas because more people live in cities.

When they got back to the lab, Aaron took the pictures and used a computer program to count the number of cells and calculate the total area of each web. These data offer a glimpse into whether spiders near Baltimore are exposed to harmful pharmaceutical chemicals and personal care products. If spiders are exposed to these chemicals, the webs will have fewer, but larger cells than a normal web. The cells will also have irregular shapes.

Featured scientists: Chris Hawn from University of Maryland Baltimore County and Aaron Curry from Baltimore Ecosystem Study LTER

Flesch–Kincaid Reading Grade Level = 7.8

Additional teacher resources related to this Data Nugget include:

  • You can watch Aaron describe his Research Experience for Teachers project here.


To reflect, or not to reflect, that is the question

Jen stops to take a photo while conducting fieldwork in the Arctic.

The activities are as follows:

Since 1978, satellites have measured changes in Arctic sea ice extent, or the area by the North Pole covered by ice. Observations show that Arctic sea ice extent change throughout the year. Arctic sea ice reaches its smallest size at the end of summer in September. Scientists who look at these data over time have noticed the sea ice extent in September has been getting smaller and smaller since 1978. This shocking trend means that the Arctic sea ice is declining, and fast! 

Why does this matter? Well, it turns out that Arctic sea ice plays a major role in the world’s climate system. When energy from the Sun reaches Earth, part of the energy is absorbed by the surface, while the rest is reflected back into space. The energy that is absorbed becomes heat, and warms the planet. The amount of energy reflected back is called albedo.

The higher the albedo, the more energy is reflected off a surface. Complete reflection is assigned a value of 1 (100%) and complete absorption is 0 (0%). Lighter colored surfaces (e.g., white) have a higher albedo than darker colored surfaces (e.g., black). Sea ice is white and reflects about 60% of solar energy striking its surface, so its albedo measurement is 0.60. This means that 40% of the Sun’s energy that reaches the sea ice is absorbed. In contrast, the ocean is much darker and reflects only about 6% of the Sun’s energy striking its surface, so its albedo measurement 0.06. This means that 94% of the Sun’s energy that reaches the ocean is absorbed.

Jen (second from left) preparing to teach her students at the University of Colorado Boulder while working in the Arctic. Photo by Polar Bears International.

Jen first became interested in sea ice in the summer of 2007, when a record low level of sea ice caught scientists off guard. They worried that if the albedo of the Arctic declines, energy that used to be reflected by the white ice will be absorbed by the dark oceans and lead to increased warming. At the time, Jen was working with new satellite observations and found it fascinating to understand what led to the record low sea ice year. To continue her passion, Jen joined a team of scientists studying the Arctic’s energy budget. 

Jen and her team predicted that the decline in the light-colored sea ice will cause Arctic albedo to decrease as well. Jen used incoming and reflected solar energy data to determine the changes in the Arctic’s albedo. These data were collected from satellites as part of the Clouds and Earth’s Radiant Energy System (CERES) project. Then, Jen compared the albedo data to changes in the extent of sea ice from satellite images to look for a pattern. 

Featured scientist: Jen Kay from the Cooperative Institute for Research in Environmental Sciences and the Department of Atmospheric and Oceanic Sciences at the University of Colorado Boulder. Written by Jon Griffith with support from AGS 1554659 and OPP 1839104.

Flesch–Kincaid Reading Grade Level = 9.6

All washed up? The effect of floods on cutthroat trout

The activities are as follows:

Mack Creek, a healthy stream located within the old growth forests in Oregon. It has a diversity of habitats because of various rocks and logs. This creates diverse habitats for juvenile and adult trout.

Streams are tough places to live. Fish living in streams have to survive droughts, floods, debris flows, falling trees, and cold and warm temperatures. In Oregon, cutthroat trout make streams their home. Cutthroat trout are sensitive to disturbances in the stream, such as pollution and sediment. This means that when trout are present it is a good sign that the stream is healthy.

Floods are very common disturbances in streams. During floods, water in the stream flows very fast. This extra movement picks up sediment from the bottom of the stream and suspends it in the water. When sediment is floating in the water it makes it harder for fish to see and breathe, limiting how much food they can find. Floods may also affect fish reproduction. If floods happen right after fish breed and eggs hatch, young fish that cannot swim strongly may not survive. Although floods can be dangerous for fish, they are also very important for creating new habitat. Floods expand the stream, making it wider and adding more space. Moving water also adds large boulders, small rocks, and logs into the stream. These items add to the different types of habitat available. 

A cutthroat trout. It is momentarily unhappy, because it is not in its natural, cold Pacific Northwest stream habitat.

Ivan and Stan are two scientists who are interested in whether floods have a large impact on the survival of young cutthroat trout. They were worried because cutthroat trout reproduce during the spring, towards the end of the winter flood season. During this time juvenile trout,less than one year old, are not good swimmers. The fast water from floods makes it harder for them to survive. After a year, juvenile trout become mature adults.These two age groups live in different habitats. Adult trout live in pools near the center of streams. Juvenile trout prefer habitats at the edges of streams that have things like rocks and logs where they can hide from predators. Also, water at the edges moves more slowly, making it easier to swim. In addition, by staying near the stream edge they can avoid getting eaten by the adults in stream pools.

Ivan and Stan work at the H.J. Andrews Long Term Ecological Research site. They wanted to know what happens to cutthroat trout after winter floods. Major floods occur every 35-50 years, meaning that Ivan and Stan would need a lot of data. Fortunately for their research they were able to find what they needed since scientists have been collecting data at the site since 1987!

To study how floods affect trout populations, Ivan and Stan used data from Mack Creek, one of the streams within their site. They decided to look at the population size of both juvenile and adult trout since they occupy such different parts of the stream. For each year of data they had, Ivan and Stan compared the juvenile and adult trout population data, measured as the number of trout, with stream discharge, or a measure of how fast water is flowing in the stream. Stream discharge is higher after flooding events. Stream discharge data for Mack Creek is collected during the winter when floods are most likely to occur. Fish population size is measured during the following summer each year. Since flooding can make life difficult for trout, they expected trout populations to decrease after major flooding events.

Featured scientists: Ivan Arismendi and Stan Gregory from Oregon State University. Written by: Leilagh Boyle.

Flesch–Kincaid Reading Grade Level = 7.5

Additional teacher resource related to this Data Nugget:

Can biochar improve crop yields?

Buckets of pine wood biochar.

The activities are as follows:

If you walk through the lush Amazon rainforest, the huge trees may be the first thing you see. But, did you know there are wonderful things to explore on the forest floor? In special places of the Amazon, there exist incredible dark soils called “Terra Preta”. These soils are rich in nutrients that help plants grow. The main source of nutrients and dark color is from charcoal added by humans. Hundreds of years ago the indigenous people added their cooking waste, including ash from fire pits, into the ground to help their food crops grow. Today, scientists and farmers are trying out this same ancient method. When this charcoal is added to soil to help plants grow, we call it biochar.

Biochar is a pretty unique material. It is created by a special process that is similar to burning materials in a fire place, but without oxygen. Biochar can be made from many different materials. Most biochar has lots of tiny spaces, or pores, that cause it to act like a hard sponge when it is in the soil. Due to these pores, the biochar can hold more water than the soil can by itself. Along with that extra water, it also can hold nutrients. Biochar has been shown to increase crop yield in tropical places like the Amazon.

Farmers in western Colorado wanted to know what would happen if they added biochar to fields near them. Their farms experience a very different climate that is cooler and drier than the Amazon. In these drier environments, farmers are concerned about the amount of water in the soil, especially during droughts. Farmers had so many questions about how biochar works in soils that scientists at Colorado State University decided to help. One scientist, Erika, was curious if biochar could really help farms in dry Colorado. Erika thought that biochar could increase crop yield by providing pores that would hold more water in the soil that crop plants can use to grow.

Matt, a soil scientist, applying biochar to the field in a treatment plot.

To test the effects of biochar in dry agricultural environments, Erika set up an experiment at the Colorado State University Agricultural Research and Development Center. She set up plots with three different soil conditions: biochar added, manure added, and a control. She chose to include a manure treatment because it is what farmers in Colorado were currently adding to their soil when they farmed. For each treatment she had 4 replicate plots, for a total of 12 plots. She added biochar or manure to a field at the same rate (30 Megagrams/ ha or 13 tons/acre). She didn’t add anything to control plots. Erika then planted corn seeds into all 12 plots.

Erika also wanted to know if the effects of biochar would be different when water was limited compared to when it was plentiful. She set up another experimental treatment with two different irrigation levels: fullirrigationandlimitedirrigation. The full irrigation plots were watered whenever the plants needed it. The limited irrigation plots were not watered for the whole month of July, giving crops a drought period during the growing season. Erika predicted that the plots with biochar would have more water in the soil. She also thought that corn yields would be higher with biochar than in the manure and control plots. She predicted these patterns would be true under both the full and limited irrigation treatments. However, she thought that the biochar would be most beneficial when crops were given less water in the limited irrigation treatments.

To measure the water in the soil, Erika took soil samples three times: a few weeks after planting (June), the middle of the growing season (July), and just before corn harvest (September). She weighedout 10 gofmoistsoil, thendried the samples for24 hoursin an oven and weighed them again. By putting the soil in the oven, the water evaporates out and leaves just the dry soil. Sarah divided the weight of the water lost by the weight of the dry soil to calculate the percent soil moisture. At the end of the season she measured crop yield as the dry weight of the corn cobs in bushes per acre (bu/acre).

Featured scientist: Erika Foster from Colorado State University

Flesch–Kincaid Reading Grade Level = 8.9

Resources to pair with this Data Nugget:

Alien life on Mars – caught in crystals?

Magnesium sulfate crystals trapping liquid water.

The activities are as follows:

Is there life on other planets besides Earth? This question is not just for science fiction. Scientists are actively exploring the possibility of life beyond Earth. The field of astrobiology seeks to understand how life in the universe began and evolved, and whether life exists elsewhere. Our own solar system contains a variety of planets and moons. In recent years scientists have also discovered thousands of planets around stars other than our Sun. So far, none of these places are exactly like Earth. Many planets have environments that would be very difficult for life as we know it to survive. However, there are life forms that exist in extreme environments that we can learn from. On Earth there are extremely hot or acidic environments like volcanic hot springs. Organisms also live in extremely cold places like Antarctic glacier ice. Environments with extremely high pressure, like hydrothermal vents on the ocean floor, also support life. If life can inhabit these extreme environments here on Earth, might extreme life forms exist elsewhere in the universe as well?

A view of the astrobiology lab.

Charles is an astrobiologist from Great Britain who is interested in finding life on other planets. The list of places that we might look for life grows longer every day. Charles thinks that a good place to start is right next door, on our neighboring planet, Mars. We know that Mars currently is cold, dry, and has a very thin atmosphere. Charles is curious to know whether there might still be places on Mars where life could exist, despite its extreme conditions.While there is no liquid water on the surface of Mars anymore, Mars once had a saltwater ocean covering much of its surface. The conditions on Mars used to be much more like Earth. Liquid water is essential for life as we know it. If there are places on Mars that still hold water, these could be great places to look for evidence of life. Charles thought that perhaps salt crystals, formed when these Martian oceans were evaporating, could trap pockets of liquid water.

Charles and his fellow researcher Nikki knew that there are a number of kinds of salts found in Martian soils, including chlorides, sulfates, perchlorates and others. They wanted to test their idea that water could get trapped when saltwater with these salts evaporate. They decided to compare the rate of evaporation for solutions with magnesium sulfate (MgSO4) with another commonsalt solution: sodium chloride, or table salt (NaCl). They chose to investigate these two salts because they are less toxic to life as we know it than many of the other chloride, perchlorate, or sulfate salts. Also, from reading the work of other scientists, Charles knows the Martian surface is particularly rich in magnesium sulfate.

Charles and Nikki measured precise quantities of saturated solutions of magnesium sulfate and sodium chloride and placed them into small containers. Plain water was used as a control. There were three replicate containers for each treatment – nine containers in total. They left the containers open to evaporate and recorded their mass daily. They kept collecting data until the mass stopped changing. At this point all of the liquid had evaporated or a salt crust had formed that was impermeable to evaporation. They then compared the final mass of the control containers to the other solutions. They also checked the resulting crusts for the presence or absence of permanent water-containing pockets. Charles and Nikki used these data to determine if either saltmakes crystals that can trap water in pockets when it evaporates.

Featured scientists: Charles Cockell, UK Centre for Astrobiology, University of Edinburgh, & Nikki Chambers, Astrobiology Teacher, West High School, Torrance, CA

Flesch–Kincaid Reading Grade Level = 8.7

Additional teacher resource related to this Data Nugget:

The Arctic is Melting – So What?

A view of sea ice in the Artic Ocean.

A view of sea ice in the Artic Ocean.

The activities are as follows:

Think of the North Pole as one big ice cube – a vast sheet of ice, only a few meters thick, floating over the Arctic Ocean. Historically, the amount of Arctic sea ice would be at a maximum in March. The cold temperatures over the long winter cause the ocean water to freeze and ice to accumulate. By September, the warm summer temperatures cause about 60% of the sea ice to melt every year. With global warming, more sea ice is melting than ever before. If more ice melts in the summer than is formed in the winter, the Arctic Ocean will become ice-free, and would change the Earth as we know it.

Student drills through lake ice

Student drills through lake ice

This loss of sea ice can have huge impacts on Arctic species and can also affect climate around the globe. For example, polar bears stand on the sea ice when they hunt. Without this platform they can’t catch their prey, leading to increased starvation. Beyond the Arctic, loss of sea ice can increase global climate change through the albedo effect (or the amount of incoming solar radiation that is reflected by a surface). Because ice is so white, it has high albedo and reflects a lot of the sunlight that hits it and keeps the earth cooler. Ice’s high albedo is why it seems so bright when the sun reflects off snow. When the ice melts and is replaced by water, which has a much lower albedo, more sunlight is absorbed by the earth’s surface and temperatures go up.

Scientists wanted to know whether the loss of sea ice and decreased albedo could affect extreme weather in the northern hemisphere. Extreme weather events are short-term atmospheric conditions that have been historically uncommon, like a very cold winter or a summer with a lot of rain. Extreme weather has important impacts on humans and nature. For example, for humans, extreme cold requires greater energy use to heat our homes and clear our roads, often increasing the use of fossil fuels. For wildlife, extreme cold could require changes in behavior, like finding more food, building better shelter, or a moving to a warmer location.

Student releases weather balloon

Student releases weather balloon

To make predictions about how the climate might change in the coming decades to centuries, scientists use climate models. Models are representations, often simplifications, of a structure or system used to make predictions. Climate models are incredibly complex. For example, climate models must describe, through mathematical equations, how water that evaporates in one region is transferred through the atmosphere to another region, potentially hundreds of miles away, and falls to the ground as precipitation.

James is a climate scientist who, along with his colleagues, wondered how the loss of arctic sea ice would affect climates around the globe. He used two well-established climate models – (1) the UK’s Hadley Centre model and (2) the US’s National Center for Atmospheric Research model. These models have been used previously by the Intergovernmental Panel on Climate Change (IPCC) to predict how much sea ice to expect in 2100.

Featured scientists: James Screen from University of Exeter, Clara Deser from National Center for Atmospheric Research, and Lantao Sun from University of Colorado at Boulder. Written by Erin Conlisk from Science Journal for Kids.

Flesch–Kincaid Reading Grade Level = 10.2

Earth Science Journal for KidsThis Data Nugget was adapted from a primary literature activity developed by Science Journal For KidsFor a more detailed version of this lesson plan, including a supplemental reading, videos, and extension activities, visit their website and register for free!

There is one scientific paper associated with the data in this Data Nugget. The citation and PDF of the paper is below.

You can play this video, showing changes in Arctic sea ice from 1987-2014, overhead at the start of class (no sound required). Each student should write down a couple of observations and questions.

What do trees know about rain?

A cypress pine, or Callitris columellaris. This species is able to survive in Australia’s dry climates.

A cypress pine, or Callitris columellaris. This species is able to survive in Australia’s dry climates.

The activities are as follows:

Did you know that Australia is the driest inhabited continent in the world? Because it is so dry, we need to be able to predict how often and how much rain will fall. Predictions about future droughts help farmers care for their crops, cities plan their water use, and scientists better understand how ecosystems will change. The typical climate of arid northwest Australia consists of long drought periods with a few very wet years sprinkled in. Scientists predict that climate change will cause these cycles to become more extreme – droughts will become longer and periods of rain will become wetter. When variability is the norm, how can scientists tell if the climate is changing and droughts and rain events today are more intense than what we’ve seen in the past?

To make rainfall predictions for the future, scientists need data on past rainfall. However, humans have only recorded rainfall in Australia for the past 100 years. Because climate changes slowly and goes through long-term cycles, scientists need very long term datasets of rainfall.

Scientist Alison coring a cypress pine

Scientist Alison coring a cypress pine

The answer to this challenge comes from trees! Using dendrochronology, the study of tree rings, scientists get a window back in time. Many tree species add a ring to their trunks every year. The width of this ring varies from year to year depending on how much water is available. If it rains a lot in a year, the tree grows relatively fast and ends up with a wide tree ring. If there isn’t much rain in a year, the tree doesn’t grow much and the ring is narrow. We can compare the width of rings from recent years to the known rain data humans have collected. Then, assuming the same forces that determine tree ring width are operating today as in the past, we can go back and interpret how much rain fell in years where we have no recorded rainfall data. This indirect information from tree rings is known as a proxy, and helps us infer data about past climates.

For this study, the scientists used cypress-pine, or Callitris columellaris. This species is able to survive in Australia’s dry climates and is long lived enough to provide data far back in time. Fortunately, scientists don’t have to cut down the trees to see their rings. Instead, they use a corer – a hollow metal drill with the diameter of a straw. They drill it through the tree all the way to its core, and extract a sample of the tissue that shows all the tree rings. The scientists took 40 cores from 27 different cypress-pine trees. The oldest trees in the sample were more than 200 years old. Next, they developed a chronology where they lined up ring widths from one tree with all the other trees, wide with wide and narrow with narrow. This chronology gives them many replicate samples, and data going back all the way to the 19th century! Next, they used a dataset of rainfall from rain gauges that have been set out in Australia since 1910. They then take this precipitation data and overlay it with the tree ring widths since 1910. For tree rings before 1910, they then project back in time using a rainfall formula.

These videos, demonstrating the science of dendrochronology, could be a great way to spark class discussions:

Featured scientist: Alison O’Donnell from University of Western Australia

Flesch–Kincaid Reading Grade Level = 8.0

Earth Science Journal for KidsThis Data Nugget was adapted from a primary literature activity developed by Science Journal For Kids. For a more detailed version of this lesson plan, including a supplemental reading, videos, and extension activities, visit their website and register for free!

There is one scientific paper associated with the data in this Data Nugget. The citation and PDF of the paper is below.

Growth rings from a Callitirs tree.

Growth rings from a Callitirs tree.

The mystery of Plum Island Marsh

Scientist, Harriet Booth, counting and collecting mudsnails from a mudflat at low tide.

Scientist, Harriet Booth, counting and collecting mudsnails from a mudflat at low tide.

The activities are as follows:

Salt marshes are among the most productive coastal ecosystems. They support a diversity of plants and animals. Algae and marsh plants use the sun’s energy to make sugars and grow. They also feed many invertebrates, such as snails and crabs, which are then eaten by fish and birds. This flow of energy through the food web is important for the functioning of the marsh. Also important for the food web is the cycle of matter and nutrients. The waste from these animals, and eventually their decaying bodies, recycle matter and nutrients, which can be used by the next generation of plants and algae. Changes in any links in the food chain can have cascading effects throughout the ecosystem.

Today, we are adding large amounts of fertilizers to our lawns and agricultural areas. When it rains, these nutrients run off into our waterways, ponds, and lakes. If the added nutrients end up in marshes, marsh plants and algae can then use these extra nutrients to grow and reproduce faster. Scientists working at Plum Island Marsh wanted to understand how these added nutrients affect the marsh food web, so they experimentally fertilized several salt marsh creeks for many years. In 2009, they noticed that fish populations were declining in the fertilized creeks.

View of a Plum Island salt marsh.

View of a Plum Island salt marsh.

Fertilizer does not have any direct effect on fish, so the scientists wondered what the fertilizer could be changing in the system that could affect the fish. That same year they also noticed that the mudflats in the fertilized creeks were covered in mudsnails, far more so than in previous years. These mudsnails eat the same algae that the fish eat, and they compete for space on the mudflats with the small invertebrates that the fish also eat. The scientists thought that the large populations of mudsnails were causing the mysterious disappearance of fish in fertilized creeks by decreasing the number of algae and invertebrates in fertilized creeks.

A few years later, Harriet began working as one of the scientists at Plum Island Marsh. She was interested in the mudsnail hypothesis, but there was yet no evidence to show the mudsnails were causing the decline in fish populations. She decided to collect some data. If mudsnails were competing with the invertebrates that fish eat, she expected to find high densities of mudsnails and low densities of invertebrates in the fertilized creeks. In the summer of 2012, Harriet counted and collected mudsnails using a quadrat (shown in the photo) and took cores down into the mud to measure the other invertebrates in the mudflats of the creeks. She randomly sampled 20 locations along a 200-meter stretch of creek at low tide. The data she collected are found below and can help determine whether mudsnails are responsible for the disappearance of fish in fertilized creeks.

Mudsnails on a mudflat, and the quadrat used to study their population size.

Mudsnails on a mudflat, and the quadrat used to study their population size.

Featured scientist: Harriet Booth from Northeastern University

Flesch–Kincaid Reading Grade Level = 10.2

Click here for a great blog post by Harriet detailing her time spent in the salt marsh: Harriet Booth: Unraveling the mysteries of Plum Island’s marshes

If your students are looking for more information on trophic cascades in salt marsh ecosystems, check out the video below!

SaveSave

SaveSave

SaveSave

SaveSave