How the cricket lost its song, Part I

Screen Shot 2015-06-22 at 12.41.05 PMThe activities are as follows:

Some of the most vibrant and elaborate traits in the animal kingdom are signals used to attract mates. These mating signals include the bright feathers and loud calls of birds or the swimming dances performed by fish. Most of the time the males of the species perform the mating signals, and females use those signals to choose a mate. While mating signals help attract females, they may also attract unwanted attention from other species, like predators.
Screen Shot 2015-06-22 at 12.29.30 PM

Robin is a scientist who studies the mating signals of Pacific field crickets. These crickets live on several of the Hawaiian Islands. Male field crickets make a loud, long-distance song to help females find them and then switch to a quiet courtship song once a female comes in close. Males use specialized structures on the wings to produce songs.

One summer, Robin noticed that the crickets on one of the islands, Kauai, were unusually quiet. Only a couple of years before, Kauai had been a very loud place to work; however, that year Robin heard no males singing! After taking the crickets back to the lab, she noticed that there was something different about the males’ wings on Kauai. Most (95%) of males were missing all of the structures that are used to produce the calling and courtship songs—they had completely lost the ability to produce song! She decided to call this new type of male a flatwing male. But why did these males have flat wings?

Screen Shot 2015-06-22 at 12.29.38 PMOn Kauai, songs of the male crickets attract female crickets, but they are also overheard by a deadly parasitoid fly. The fly sprays its larvae on the backs of the crickets. The larvae then burrow into the crickets’ body cavity and eat them from the inside out! Because flatwing males cannot produce songs, flat wings may help male crickets remain unnoticed by the parasitoid flies. To test this idea, Robin dissected the males to look for fly larvae. She compared infection levels for 67 normal males—collected before the flatwing mutation appeared in the population—to 122 flatwing males that she collected after the flatwing mutation appeared. She expected fewer males to be infected by the parasitoid fly after the appearance of the flatwing mutation in the cricket population.

Featured scientist: Robin Tinghitella from the University of Denver

Flesch–Kincaid Reading Grade Level = 9.1

Additional teacher resources related to this Data Nugget include:

SaveSave

SaveSave

SaveSave

SaveSave

Invasive reeds in the salt marsh

Culverts run under roads and allow water from the ocean to enter a marsh. Phragmites can be seen growing in the background.

Culverts run under roads and allow water from the ocean to enter a marsh. Phragmites can be seen growing in the background.

The activities are as follows:

Phragmites australis is an invasive reed, a type of grass that grows in water. Phragmites is taking over saltwater marshes in New England, or wetland habitats near the Atlantic Ocean coast. Phragmites does so well it crowds out native plants that once served as food and homes for marsh animals. Once Phragmites has invaded, it is sometimes the only plant species left! Phragmites does best where humans have disturbed a marsh, and scientists were curious why that might be. They thought that perhaps when a marsh is disturbed, the salinity, or amount of salt in the water, changes. Phragmites might be able to survive after disturbances that cause the amount of salt in the water to drop, but becomes stressed when salinity is high.

Students collecting data on the plant species present in the marsh using transects. Every 1m along the tape, students observe which plants are present. Phragmites is the tall grass that can be seen growing behind the students.

Students collecting data on the plant species present in the marsh using transects. Every 1m along the tape, students observe which plants are present. Phragmites is the tall grass that can be seen growing behind the students.

Fresh water in a marsh flows from the upstream source to downstream. Saltwater marshes end at the ocean, where freshwater mixes with salty ocean water. One type of disturbance is when a road is cut through a marsh. Upstream of the road, the marsh is cut off from the salt waters from the ocean, so only fresh water will enter and salinity will drop. Downstream of the road, the marsh is still connected to the ocean and salinity should be unaffected by the disturbance. Often, a culvert (a pipe that runs under the road) is placed to allow salt water to pass from the ocean into the marsh. The amount of ocean water flowing into the marsh is dependent on the diameter of the culvert.

Students at Ipswich High School worked with scientists from the Mass Audubon, a conservation organization, to look at the Phragmites in the marsh. They looked at an area where the salinity in the marsh changed after a road was built. They wanted to know if this change would affect the amount of Phragmites in that marsh. In 1996, permanent posts were placed 25 meters apart in the marsh. That way, scientists could collect data from the same points each year. At these posts, students used transects, a straight line measured from a point to mark where data is collected. Then they collected data on all the plants that were found every meter along the transects. Data has been collected at these same points since 1996. In 2005, an old 30cm diameter culvert was replaced with two 122cm culverts. These wider culverts allow much more salty ocean water to flow under the road and into the marsh. Students predicted that after the culverts were widened, more ocean water would enter the marsh. This would make salinity go up, making it harder for Phragmites to grow, and it would decline in numbers. Students continued to survey the plants found along transects at each permanent post and documented their findings.

Featured scientists: Lori LaFrance from Ipswich High School, Massachusetts and Liz Duff from Mass Audubon. This study was part of the PIE-LTER funded by the NSF.

Flesch–Kincaid Reading Grade Level = 9.0

To access the original data presented in this activity, and collected by students, access Mass Audubon’s Vegetation Data, available online. To access the salinity data related to this activity, and collected by students, access Mass Audubon’s Salinity Data, available online. Scroll down to “Ipswich, MA, Town Farm Road” for data from the site discussed here.

View of the two new culverts.

View of the two new culverts.

The old pipe that was removed.

The old pipe that was removed, and the new culvert.

 

 

 

Arial view of the upstream and downstream research sites.

Arial view of the upstream and downstream research sites.

Growing energy: comparing biofuel crop biomass

The activities are as follows:GLBRC1

Éste Data Nugget también está disponible en Español:

Most of us use fossil fuels every day to power our cars, heat and cool our homes, and make many of the products we buy. Fossil fuels like coal, oil, and natural gas come from plants and animals that lived and died hundreds of millions of years ago – this is why they’re called “fossil” fuels! These ancient energy sources have many uses, but they also have a major problem. When we use them, fossil fuels release carbon dioxide into the atmosphere. As a greenhouse gas, carbon dioxide traps heat and warms the planet. To avoid the serious problems that come with a warmer climate, we need to transition away from fossil fuels and think of new, cleaner ways to power our world.

Biofuels are one of these alternatives. Biofuels are made out of the leaves and stems (called biomass) of plants that are alive and growing today. When harvested, the biomass can be converted into fuel. Plants take in carbon dioxide from the atmosphere to grow. It’s part of the process of photosynthesis. In that way, biofuels can create a balance between the carbon dioxide taken in by plants and what is released when burning fuels.

GLBRC2

At the Great Lakes Bioenergy Research Center, scientists and engineers work together to study how to grow plants that take in as much carbon as possible while also producing useful biofuels. Gregg is one of these scientists and he wants to find out how much biomass can be harvested from different plants like corn, grasses, trees, and even weeds. Usually, the bigger and faster a plant grows, the more biomass they make. When more biomass is grown, more biofuels can be produced. Gregg is interested in learning how to produce the most biomass while not harming the environment.

While biofuels may sound like a great solution, Gregg is concerned with how growing them may affect the environment. Biofuels plants come with tradeoffs. Some, like corn, are great at quickly growing to huge heights – but to do this, they often need a lot of fertilizer and pesticides. These can harm the environment, cost farmers money, and may even release more of the greenhouse gasses we are trying to reduce. Other plants might not grow so fast or so big, but also don’t require as many chemicals to grow, and can benefit the environment in other ways, such as by providing habitat for animals. Many of those plants are perennials, meaning that they can grow back year after year without replanting (unlike corn). Common biofuel perennials like switchgrass, Miscanthus grass, prairie grasses, and poplar trees require fewer fertilizers and pesticides to grow, and less fossil fuel-powered equipment to grow and harvest them. Because of this, perennials might be a smart alternative to corn as a source of biofuels.

Gregg out in the GLBRC

Gregg out in the WI experimental farm.

Believing in the power of perennials, Gregg thought that it might even be possible to get the same amount of biomass from perennials as is normally harvested from corn, but without using all of the extra chemicals and using less energy. To investigate his ideas, Gregg worked together with a team to design a very big experiment. The team grew many plots of biofuel plants on farms in Wisconsin and Michigan, knowing that the soils at the site in Wisconsin were more nutrient-rich and better for the plants they were studying than at the Michigan site. At each farm, they grew plots of corn, as well as five types of perennial plots: switchgrass, Miscanthus grass, a mix of prairie plant species, young poplar trees, and weeds. For five years, the scientists harvested, dried, and weighed the biomass from each plot every fall. Then, they did the math to find the average amount of biomass produced every year by each plot type at the Wisconsin and Michigan sites.

Featured scientist: Dr. Gregg Sanford from University of Wisconsin-Madison. Written with Marina Kerekes.

Flesch–Kincaid Reading Grade Level = 8.9

This Data Nugget was adapted from a data analysis activity developed by the Great Lakes Bioenergy Research Center (GLBRC). For a more detailed version of this lesson plan, including a supplemental reading, biomass harvest video and extension activities, click here.

This lesson can be paired with The Science of Farming research story to learn a bit more about the process of designing large-scale agricultural experiments that need to account for lots of variables.

For a classroom reading, click here to download an article written for the public on these research findings. Click here for the scientific publication. For more bioenergy lesson plans by the GLBRC, check out their education page.

Aerial view of GLBRC KBS LTER cellulosic biofuels research experiment; Photo Credit: KBS LTER, Michigan State University

Aerial view of GLBRC KBS LTER cellulosic biofuels research experiment; Photo Credit: KBS LTER, Michigan State University

For more photos of the GLBRC site in Michigan, click here.

logo

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

SaveSaveSaveSave

SaveSave

SaveSave

SaveSave

Springing forward

Scientist Shaun collecting phenology data in the climate change experiment. He is recording the date that the first flowers emerge for dame’s rocket.

Sean Mooney, a high school researcher, collecting phenology data in the climate change experiment. He is recording the date that the first flowers emerge for dame’s rocket.

The Reading Level 1 activities are as follows:

The Reading Level 3 activities are as follows:

Éste Data Nugget también está disponible en Español:

Every day we add more greenhouse gases to our air when we burn fossil fuels like oil, coal, and natural gas. Greenhouse gasses trap the sun’s heat, so as we add more the Earth is heating up! What does climate change mean for the species on our planet? The timing of life cycle events for plants and animals, like flowering and migration, is largely determined by cues organisms take from the environment. The timing of these events is called phenology. Scientists studying phenology are interested in how climate change will influence different species. For example, with warming temperatures and more unpredictable transitions between seasons, what can we expect to happen to the migration timings of birds, mating seasons for animals, or flowering times of plants?

Scientists collecting phenology data in the climate change experiment. They are recording the date that the first flowers emerge for dame’s rocket.

Scientists collecting phenology data in the climate change experiment.

Plants are the foundation for almost all life on Earth. Through photosynthesis, plants produce the oxygen (O2) that we breathe, food for their own growth and development, food for animals and microbes, and crops that provide food and materials for human society. Because plants are so important to life, we need to find out how climate change could affect them. One good place to start is by looking at flowering plants, guided by the question, how will increased temperatures affect the phenology of flowering? One possible answer to this question is that the date that flowers first emerge for a species is driven by temperature. If this relationship is real, we would expect flowers to emerge earlier each year as temperatures increase due to climate change. But if flowers come out earlier and earlier each year, this could greatly impact plant reproduction and could cause problems for pollinators who count on plants flowering at the same time the pollinators need the pollen for food.

Shaun, Mark, Elizabeth, and Jen are scientists in Michigan who wanted to know if higher temperatures would lead to earlier flowering dates for plants. They chose to look at flowers of dame’s rocket, a leafy plant that is related to the plants we use to make mustard! Mark planted dame’s rocket in eight plots of land. Plots were randomly assigned to one of two treatments. Half of the plots were left to experience normal temperatures (normal), while the other four received a heating treatment to simulate climate change (heated). Air temperatures in heated plots increased by 3°C, which mimics climate change projections for what Michigan will experience by the end of the century. Mark, Elizabeth, and Jen measured the date that each plant produced its first flower, and the survival of each plant. The scientists predicted that dame’s rocket growing in the heated plots would flower earlier than those in the normal plots.

 Featured scientists: Shaun Davis from Thornapple Kellogg Middle School and Mark Hammond, Elizabeth Schultheis, and Jen Lau from Michigan State University

Flesch–Kincaid Reading Grade Level = The Reading Level 3 activity has a score of 9.2; the Level 1 has a 6.4.

Flowers of Hesperis matronalis (dame’s rocket), a species of mustard that was introduced to the U.S. from Eurasia.

Flowers of Hesperis matronalis (dame’s rocket), a species of mustard that was introduced to the U.S. from Eurasia.

Additional teacher resources related to this Data Nugget include:

  • If you would like your students to interact with the raw data, we have attached the original data here. The file also includes weather data over the course of the experiment if students want to ask and explore independent questions.

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

Shooting the poop

The activities are as follows:butterfly

Imagine walking through a forest in the middle of summer. You can hear birds chirping, a slight breeze rustling the leaves, and a faint pinging noise like rain. However, what you hear is not rain – it is the sound of millions of forest insects pooping!

If we look closer to see who is making all this frass (insect poop) you’ll notice there are tons of caterpillars amongst the leaves. You might see caterpillars eating plants and hiding from predators. Some caterpillars might camouflage themselves, while others build shelters from leaves to avoid being seen. Others are brightly colored to warn predators that they have chemicals that make them taste awful.

The silver-spotted skipper is a caterpillar that lives in the forest. They have a variety of defense strategies against enemies, including building leaf shelters for protection. For these insects, the sight and smell of poop might alert predators that there is a tasty meal nearby. Usually caterpillars keep moving and leave their frass behind, but this species builds shelters and isn’t able to keep moving because they need their shelters for protection.

Martha is a behavioral biologist who studies these insects. While raising silver-spotted skipper caterpillars in the lab, Martha noticed that they were making a pinging noise in their containers. Upon further observation, she discovered that they “shoot their poop”, sometimes launching their frass over 1.5m! Martha wanted to figure out why these caterpillars might have this very strange behavior. Perhaps launching their frass is a way to avoid being found by predators.

To evaluate whether the smell of frass helps predators find and locate silver-spotted skippers, Martha conducted an experiment with a wasp predator that eats these caterpillars. She allowed two silver-spotted skippers to build shelters on a leaf and then carefully removed the caterpillars. She then inserted 6 frass pellets into one of the shelters, and 6 beads designed to look like frass but with no smell (control treatment) into the other shelter. She placed the leaf with the two shelters in a cage containing an actively foraging wasp colony (n = 10 wasps). She recorded how many times the wasps visited each shelter (control beads or frass) and how much time the wasps spent exploring each shelter. She expected wasps would spend more time exploring the shelters with the frass than they would the control shelters.

Featured scientist: Martha Weiss from Georgetown University. Written by Kylee Grenis.

Flesch–Kincaid Reading Grade Level = 9.6

Additional teacher resources related to this Data Nugget include:

YouTube videos of the silver-spotted skipper (Epargyreus clarus) “shooting its poop” (aka. ballistic defecation). These videos would be great to show in class after students have read the Research Background section to help engage them with the system.

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

SaveSaveSaveSave

SaveSave

Sexy smells

Danielle holding a male junco. Notice the white tail feathers.

Danielle holding a male junco. Notice the white tail feathers.

The activities are as follows:

Animals collect information about each other and the rest of the world using multiple senses, including sight, sound, and smell. They use this information to decide what to eat, where to live, and who to pick as a mate. Choosing a mate is an important decision that requires a lot of information, such as how healthy a potential partner is, and information about their genes. Mate quality can affect how many offspring an animal has and if their genes will get passed on to the next generation.

Danielle removing preen oil from a junco.

Danielle removing preen oil from a junco.

Many male birds have brightly colored feathers that are attractive to females. For example, the peacock has bright and elaborate tail feathers that are thought to communicate a male’s quality to the females. Besides using their sense of sight to see feathers, female birds may use their other senses to gather information about potential mates as well. Danielle is a biologist and she wanted to figure out if birds use vision and their other senses, such as smell, to determine the quality of potential mates.

Danielle decided to research how dark-eyed juncos communicate through their sense of sight and smell. Dark-eyed juncos are a type of sparrow. They are not colorful birds like peacocks, but they do have bright white feathers in their tails. Male dark-eyed juncos have more tail-white than females. Danielle thought is possible that females use the amount of white in a male’s tail to determine whether he is a high quality mate. Danielle was also interested in several chemical compounds found in junco preen oil, which birds spread on their feathers. This preen oil contains compounds that give birds their odor. Danielle found that males and females have different odors! Just as males have more white in their tail feathers, they also produce more of a chemical called 2-pentadecanone. Danielle wanted to test whether this chemical functioned as a signal to females of mate quality.

A preen gland where birds produce preen oil.

A preen gland where birds produce preen oil.

To test her two potential hypotheses, Danielle captured male juncos at Mountain Lake Biological Station in Virginia. She measured the amount of tail-white by estimating the proportion of each tail feather that was white, and adding up the values from each feather. She also took preen oil samples and measured the percent of each sample that was made up of 2-pentadecanone. She followed these birds for one breeding season to find out how many offspring they had. If females pick mates based on visual ornaments, then she predicted males with more tail-white would have more offspring. If females pick mates based on smell, then she predicted males with more 2-pentadecanone would have more offspring.

Featured scientist: Danielle Whittaker from Michigan State University

Flesch–Kincaid Reading Grade Level = 9.4

Additional classroom resources for this Data Nugget:

SaveSave

Dangerous Aquatic Prey: Can Predators Adapt to Toxic Algae?

Figure 1: Scientist Finiguerra collecting copepods at the New Jersey experimental site.

Figure 1: Scientist Finiguerra collecting copepods at the New Jersey experimental site.

The activities are as follows:

Phytoplankton are microscopic algae that form the base of all aquatic food chains. While organisms can safely eat most phytoplankton, some produce toxins. When these toxic algae reach high population levels it is known as a toxic algal bloom. These blooms are occurring more and more often across the globe – a worrisome trend! Toxic algae poison animals that eat them, and in turn, humans that eat these animals. For example, clams and other shellfish filter out large quantities of the toxic algae, and the toxic cells accumulate in their tissues. If humans then eat these contaminated shellfish they can become very sick, and even die.

One reason the algae produce toxins is to reduce predation. However, if predators feed on toxic prey for many generations, the predator population may evolve resistance, by natural selection, to the toxic prey. In other words, the predators may adapt and would be able to eat lots of toxic prey without being poisoned. Copepods, small crustaceans and the most abundant animals in the world, are main consumers of toxic algae. Along the northeast coast of the US, there is a toxic phytoplankton species, Alexandrium fundyense, which produces very toxic blooms. Blooms of Alexandrium occur often in Maine, but are never found in New Jersey. Scientists wondered if populations of copepods that live Maine were better at coping with this toxic prey compared to copepods from New Jersey.

Figure 2: A photograph of a copepod (left) and the toxic alga Alexandrium sp. (right).

Figure 2: A photograph of a copepod (left) and the toxic alga Alexandrium sp. (right).

Scientists tested whether copepod populations that have a long history of exposure to toxic Alexandrium are adapted to this toxic prey. To do this, they raised copepods from Maine (long history of exposure to toxic Alexandrium) and New Jersey (no exposure to toxic Alexandrium) in the laboratory. They raised all the copepods under the same conditions. The copepods reproduced and several generations were born in the lab (a copepod generation is only about a month). This experimental design eliminated differences in environmental influences (temperature, salinity, etc.) from where the populations were originally from.

The scientists then measured how fast the copepods were able to produce eggs, also called their egg production rate. Egg production rate is an estimate of growth and indicates how well the copepods can perform in their environment. The copepods were given either a diet of toxic Alexandrium or another diet that was non-toxic. If the copepods from Maine produced more eggs while eating Alexandrium, this would be evidence that copepods have adapted to eating the toxic algae. The non-toxic diet was a control to make sure the copepods from Maine and New Jersey produced similar amounts of eggs while eating a good food source. For example, if the copepods from New Jersey always lay fewer eggs, regardless of good or bad food, then the control would show that. Without the control, it would be impossible to tell if a difference in egg production between copepod populations was due to the toxic food or something else.

Featured scientists: Michael Finiguerra and Hans Dam from University of Connecticut-Avery Point, and David Avery from the Maine Maritime Academy

Flesch–Kincaid Reading Grade Level = 10.6

There are three scientific papers associated with the data in this Data Nugget. The citations and PDFs of the papers are below. 

Colin, SP and HG Dam (2002) Latitudinal differentiation in the effects of the toxic dinoflagellate Alexandrium spp. on the feeding and reproduction of populations of the copepod Acartia hudsonicaHarmful Algae 1:113-125

Colin, SP and HG Dam (2004) Testing for resistance of pelagic marine copepods to a toxic dinoflagellate. Evolutionary Ecology 18:355-377

Colin, SP and HG Dam (2007) Comparison of the functional and numerical responses of resistant versus non-resistant populations of the copepod Acartia hudsonica fed the toxic dinoflagellate Alexandrium tamarense. Harmful Algae 6:875-882

Marvelous mud

mud

You can tell that the mud in this picture is high in organic matter because it is dark brown and mucky (in real life you’d be able to smell it, too!)

The activities are as follows:

The goopy, mucky, often stinky mud at the bottom of a wetland or lake is a very important part of the ecosystem. Wetland mud is much more than just wet dirt. For example, many species of microbes live in the wetland mud where they decompose (breakdown) dead plant and animal material to obtain energy. This dead plant and animal material is called organic matter. However, the wetland mud microbes do not have all the oxygen they need to decompose the plant and animal tissues quickly and efficiently. Because of this, the dead material in wetland mud decomposes much more slowly than similar dead material in dry soil.

A successful core! You can see that the tube has mud, as well as some of the water from the wetland that was on top of the mud.

A successful core! You can see that the tube has mud, as well as some of the water from the wetland that was on top of the mud.

As a graduate student, Lauren became fascinated with wetland mud and its interesting properties. She wanted to know how important all the mud and its organic matter is for wetlands. By talking with other members of her lab and reading scientific papers, Lauren learned that wetland mud can often be high in the element phosphorus and that phosphorus acts as a fertilizer for plants, including wetland plants and algae. However, nutrients, such as phosphorus can build up in wetland mud. Lauren thought it might be possible that the organic matter in the mud was the source of all the phosphorus in some wetlands. She predicted that wetlands with more organic matter would have more phosphorus. If her data support her hypothesis, it could mean that organic matter is very important for wetlands, because nutrients are needed for algae and plants to grow.

Although most mud is high in organic matter and nutrients, not all mud is the same. There is natural variation in the amount of organic matter and nutrients from place to place. Even within the same location mud can be very different in spots. Lauren used this variability to test her ideas. She measured organic matter and phosphorus in mud from 16 freshwater locations (four lakes, five ponds, and seven wetlands). She took cores that allowed her to sample mud deep into the ground. She then brought her cores back to the lab and measured organic matter and phosphorus levels in her samples.

Featured scientist: Lauren Kinsman-Costello from Kent State University

Flesch–Kincaid Reading Grade Level = 9.8

More photos associated with this research can be found here. There is one scientific paper associated with the data in this Data Nugget. The citation and PDF of the paper is below:

Kinsman-Costello LE, J O’Brien, SK Hamilton (2014) Re-flooding a Historically Drained Wetland Leads to Rapid Sediment Phosphorus Release. Ecosystems 17:641-656

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

Fish fights

A male in his territory (front) and an intruding male (back)

A male in his territory (front) and an intruding male (back)

The activities are as follows:

In many animals, males fight for territories. Getting a good territory and making sure other males don’t steal it is very important! Males use these territories to attract females for mating. The males that get the best territories are more likely to mate with females and have more babies. Only the males that have babies will pass on their genes to the next generation.

Stickleback fish use the shallow bottom areas of lakes to mate. Male stickleback fish fight each other to gain the best territories in this habitat. In their territories, males build a nest out of sand, aquatic plants, and glue they produce from their kidneys. The better the nest, the more females a male can attract. Males then use courtship dances to attract females to their nests. If a female likes a male, she will deposit her eggs in his nest. Then the male will care for those eggs and protect the offspring that hatch.

Scientist Alycia out in the field collecting male stickleback fish for her experiments

Scientist Alycia out in the field collecting male stickleback fish for her experiments

Alycia is a scientist who is interested in understanding what makes a male stickleback a good fighter and defender of his territory. Perhaps more aggressive males are better at defending their territory and nests because they are better at fighting off other males. She used sticklebacks she collected from British Columbia to test her hypothesis.

In her experiment, 24 males were kept in 6 large tanks, with 4 males in each tank. Alycia watched each of the 24 males every day for 10 days. She recorded the behaviors of each fish when they were competing for territories, defending their territory, and building their nests. She also recorded the size of the males’ territories and whether they had a nest each day.

Featured scientist: Alycia R. Lackey from Michigan State University

Flesch–Kincaid Reading Grade Level = 7.7

More news on Alycia’s work on stickleback fish can be found at her BEACON blog post, “Making and Breaking a Species.” 

A male (right) defending his territory from another fish (left).

A male (right) defending his territory from another fish (left).

Which guy should she choose?

sticklebackmale

A male stickleback tending his nest. Notice the male’s bright red throat, blue eye, and blue-green body.

The activities are as follows:

In many animals, males use complex behaviors to attract females. They use displays to show off colorful parts of their bodies, like feathers or scales. For example, male peacocks fan out and shake their colorful tails to attract female attention. These displays take up a lot of energy, and yet some males are unable to attract any females while other males attract many females.

In stickleback fish, males are very colorful to attract females. Their throats turn bright red during the spring when they mate. Stickleback males also court females with zig-zag swimming! The males swim in a z-shaped pattern in front of the female, probably to show off their mating colors. Before male fish can get the attention of female fish, they must gain a territory and build a nest. In sticklebacks, females inspect nests that the males build and then decide if they want to deposit their eggs. Males care for the offspring before and after the eggs hatch. A female fish would benefit from identifying “high quality” males and choosing those males for mates. High quality males would have more energy to protect their offspring and would make better fathers. They could also pass on genes that make offspring more attractive to females in the next generation.

Scientist Alycia collecting fish from a freshwater lake in British Columbia, Canada.

Scientist Alycia collecting fish from a freshwater lake in British Columbia, Canada.

Alycia is a scientist who is interested in the stickleback’s mating behaviors. She wanted to figure out why there are differences between males and why certain males can attract a mate while others cannot. What is it about the way a male looks, moves, or smells that attracts females? What male traits are females looking at when deciding on a mate? Alycia thought female sticklebacks may choose males with redder throats and/or more complex behaviors because those traits show the female that those males are high quality. Previous work with these fish showed that male behavior, color, or territory size, or the presence of a nest could all be important. But it was still not clear which characteristic might be most important.

Alycia set up an experiment to figure out if male throat color or zig-zag swimming behaviors were attractive to females. She used a total of 24 male fish and six 75-gallon tanks. She divided the males up evenly between the large tanks, placing four males in each one. For 10 days she observed the male fish and recorded competition behaviors, territory defense, and nest building. On the tenth day, she introduced one female to each tank of four males. She recorded how the males behaved in courtship and which males the females chose. She also recorded the redness of each male.

Featured scientist: Alycia R. Lackey from Michigan State University

Flesch–Kincaid Reading Grade Level = 7.9

More news on Alycia’s work on stickleback fish can be found at her BEACON blog post, “Making and Breaking a Species” and her blog post for the MSU museum