Can biochar improve crop yields?

Buckets of pine wood biochar.

The activities are as follows:

If you walk through the lush Amazon rainforest, the huge trees may be the first thing you see. But, did you know there are wonderful things to explore on the forest floor? In special places of the Amazon, there exist incredible dark soils called “Terra Preta”. These soils are rich in nutrients that help plants grow. The main source of nutrients and dark color is from charcoal added by humans. Hundreds of years ago the indigenous people added their cooking waste, including ash from fire pits, into the ground to help their food crops grow. Today, scientists and farmers are trying out this same ancient method. When this charcoal is added to soil to help plants grow, we call it biochar.

Biochar is a pretty unique material. It is created by a special process that is similar to burning materials in a fire place, but without oxygen. Biochar can be made from many different materials. Most biochar has lots of tiny spaces, or pores, that cause it to act like a hard sponge when it is in the soil. Due to these pores, the biochar can hold more water than the soil can by itself. Along with that extra water, it also can hold nutrients. Biochar has been shown to increase crop yield in tropical places like the Amazon.

Farmers in western Colorado wanted to know what would happen if they added biochar to fields near them. Their farms experience a very different climate that is cooler and drier than the Amazon. In these drier environments, farmers are concerned about the amount of water in the soil, especially during droughts. Farmers had so many questions about how biochar works in soils that scientists at Colorado State University decided to help. One scientist, Erika, was curious if biochar could really help farms in dry Colorado. Erika thought that biochar could increase crop yield by providing pores that would hold more water in the soil that crop plants can use to grow.

Matt, a soil scientist, applying biochar to the field in a treatment plot.

To test the effects of biochar in dry agricultural environments, Erika set up an experiment at the Colorado State University Agricultural Research and Development Center. She set up plots with three different soil conditions: biochar added, manure added, and a control. She chose to include a manure treatment because it is what farmers in Colorado were currently adding to their soil when they farmed. For each treatment she had 4 replicate plots, for a total of 12 plots. She added biochar or manure to a field at the same rate (30 Megagrams/ ha or 13 tons/acre). She didn’t add anything to control plots. Erika then planted corn seeds into all 12 plots.

Erika also wanted to know if the effects of biochar would be different when water was limited compared to when it was plentiful. She set up another experimental treatment with two different irrigation levels: fullirrigationandlimitedirrigation. The full irrigation plots were watered whenever the plants needed it. The limited irrigation plots were not watered for the whole month of July, giving crops a drought period during the growing season. Erika predicted that the plots with biochar would have more water in the soil. She also thought that corn yields would be higher with biochar than in the manure and control plots. She predicted these patterns would be true under both the full and limited irrigation treatments. However, she thought that the biochar would be most beneficial when crops were given less water in the limited irrigation treatments.

To measure the water in the soil, Erika took soil samples three times: a few weeks after planting (June), the middle of the growing season (July), and just before corn harvest (September). She weighedout 10 gofmoistsoil, thendried the samples for24 hoursin an oven and weighed them again. By putting the soil in the oven, the water evaporates out and leaves just the dry soil. Sarah divided the weight of the water lost by the weight of the dry soil to calculate the percent soil moisture. At the end of the season she measured crop yield as the dry weight of the corn cobs in bushes per acre (bu/acre).

Featured scientist: Erika Foster from Colorado State University

Flesch–Kincaid Reading Grade Level = 8.9

Growing energy: comparing biofuel crop biomass

The activities are as follows:GLBRC1

Most of us use fossil fuels every day. Fossil fuels power our cars, heat and cool our homes, and are used to produce most of the things we buy. These energy sources are called “fossil” fuels because they are made from plants and animals that grew hundreds of millions of years ago. After these species died, their tissues were slowly converted into coal, oil, and natural gas. An important fact about fossil fuels is that they are limited and nonrenewable. It takes a long time for dead plants and animals to be converted into fossil fuels. Once we run out of the supply we have on Earth today, we are out! We need to think of new ways to power our world now that we use more energy than ever.

Biofuels are made from the tissues of plants that are alive and growing today. When plants are harvested, their tissues, called biomass, can be converted into fuel. Biofuels are renewable, meaning we can produce them as quickly as we use them up. At the Great Lakes Bioenergy Research Center sites in Wisconsin and Michigan, scientists and engineers are attempting to figure out which plants make the best biofuels.

GLBRC2

Gregg is a scientist who wants to find out how much plant biomass can be harvested from different crops like corn, grasses, weeds, and trees. The bigger and faster a plant grows, the more biomass they make. The more biomass the more fuel can be produced. Gregg is interested in maximizing how much biomass we can produce while also not harming the environment. Each plant species comes with a tradeoff – some may be good at growing big, but need lots of inputs like fertilizer and pesticide. Corn is an annual, meaning it only lives for one year. Corn is one of the best crops for producing a lot of biomass. However, farmers must add a lot of chemical fertilizers and pesticides to their fields to plant corn every year. These chemicals harm the environment and cost farmers money. Other plants harvested for biofuels, like switchgrass, prairie species, poplar trees, and Miscanthus grass are perennials. Perennials grow back year after year without replanting. Perennials require much less chemical fertilizers and pesticides to grow. If perennials can produce high levels of biomass with low levels of soil nutrients, perhaps a perennial crop could replace corn as the best biofuel crop.

Gregg out in the GLBRC

Gregg out in the WI experimental farm.

To test this hypothesis, scientists worked together to design a very large experiment. Gregg and his team grew multiple plots of six different biofuel crops on experimental farms in Wisconsin and Michigan. The soils at the Wisconsin site are more fertile and have more nutrients than the soils at the Michigan site. At each farm, they grew plots of corn to be compared to the growth of plants in five types of perennial plots. The types of perennial plots they planted were: switchgrass, Miscanthus grass, poplar saplings (trees), a mix of prairie species, and weedy fields. Every fall the scientists harvested, dried, and then weighed the biomass from each plot. They continued taking measurements for five years and then calculated the average biomass production in a year for each plot type at each site.

Featured scientist: Dr. Gregg Sanford from University of Wisconsin-Madison

Flesch–Kincaid Reading Grade Level = 8.5

This Data Nugget was adapted from a data analysis activity developed by the Great Lakes Bioenergy Research Center (GLBRC). For a more detailed version of this lesson plan, including a supplemental reading, biomass harvest video and extension activities, click here.

This lesson can be paired with The Science of Farming research story to learn a bit more about the process of designing large-scale agricultural experiments that need to account for lots of variables.

For a classroom reading, click here to download an article written for the public on these research findings. Click here for the scientific publication. For more bioenergy lesson plans by the GLBRC, check out their education page.

Aerial view of GLBRC KBS LTER cellulosic biofuels research experiment; Photo Credit: KBS LTER, Michigan State University

Aerial view of GLBRC KBS LTER cellulosic biofuels research experiment; Photo Credit: KBS LTER, Michigan State University

As a hook before beginning the Data Nugget, students can watch the following video for an introduction to biofuels:

For more photos of the GLBRC site in Michigan, click here.

logo

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

SaveSaveSaveSave

SaveSave

SaveSave

SaveSave

Is chocolate for the birds?

Cocoa beans used to make chocolate!

Cocoa beans used to make chocolate!

The activities are as follows:

About 9,000 years ago humans invented agriculture as a way to grow enough food for people to eat. Today, agriculture happens all over the globe and takes up 40% of Earth’s land surface. To make space for our food, humans must clear large areas of land, which creates a drastic change, or disturbance, to the habitat. This land-clearing disturbance removes the native plants already there including trees, small flowering plants, and grasses. Many types of animals including mammals, birds, and insects depend on these native plants for food or shelter. Large scale disturbances can make it difficult to live in the area. For example, a woodpecker bird cannot live somewhere that has no trees because they live and find their food in the trees.

However, some agriculture might help some animals because they can use the crops being grown for the food and shelter they need to survive. One example is the cacao tree, which grows in the rainforests of South America. Humans use the seeds of this plant to make chocolate, so it is a very important crop! Cacao trees need very little light. They grow best in a unique habitat called the forest understory, which is composed of the shorter trees and bushes under the large trees found in rainforests. To get a lot of cacao seeds for chocolate, farmers need to have large rainforest trees above their cacao trees for shade. In many ways, cacao farms resemble a native rainforest. Many native plant species grow there and there are still taller tree species. However, these farms are different in important ways from a native rainforest. For example, there are many more short understory trees in the farm than there are in native rainforests. Also, there are fewer small flowering plants on the ground because humans that work on cacao farms trample them as they walk around the farm.

rainforest and cacao plantation

Part I: Skye is a biologist who wanted to know whether rainforest birds use the forest when they are disturbed by adding cacao farms. Skye predicted she would see many fewer birds in the cacao farms, compared to the rainforest. To measure bird abundance, she simply counted birds in each habitat. To do this she chose one rainforest and one cacao farm and set up two transects in each. Transects are parallel lines along which the measurements are taken. She spent four days counting birds along each transect, for a total of eight days in each habitat. She had to get up really early and count birds between 6:00 and 9:00 in the morning because that’s when they are most active.

Part II: Skye was shocked to see so many birds in cacao farms! She decided to take a closer look at her data. Skye wanted to know how the types of birds she saw in the cacao farms compared to the types of birds she saw in the rainforest. She predicted that cacao farms would have different types of birds than the undisturbed rainforest. She thought the bird types would differ because each habitat has different types of food available for birds to eat and different types of plants for birds to live in.

Skye broke her abundance data down to look more closely at four types of birds:

  1. Toucans (Eat: large insects and fruit from large trees, Live: holes in large trees)
  2. Hummingbirds (Eat: nectar from flowers, Live: tree branches and leaves)
  3. Wrens (Eat: small insects, Live: small shrubs on the forest floor)
  4. Flycatchers (Eat: Small insects, Live: tree branches and leaves)

skyecacao

Featured scientist: Skye Greenler from Colorado College and Purdue University

Flesch–Kincaid Reading Grade Level = 8.5

Additional teacher resources related to this Data Nugget:

  • The research described in this activity has been published. The citation and a PDF of the scientific paper can be found here:
  • The complete dataset for the study has been published to a data repository and is available for classroom use. This dataset has even more data than what is in the Data Nugget activity. While the Data Nugget has data for just two habitats (cacao and rainforest), the full dataset also includes two other agroforest habitat types. The dataset also includes data for every species (169) recorded during the study, whereas the Data Nugget only has data for four families (toucans, wrens, flycatchers, hummingbirds).
  • Study Location: Skye’s study took place in a 10 km2 mixed rainforest, pasture, agro-forest, and monoculture landscape near the village of Pueblo Nuevo de Villa Franca de Guácimo, Limón Province, Costa Rica (10˚20˝ N, 83˚20˝ W), in the Caribbean lowlands 85 km northeast of San José.
  • For more background on the importance of biodiversity, students can eat this article in The Guardian – What is biodiversity and why does it matter to us?

About Skye: As a child Skye was always asking why; questioning the behavior, characteristics, and interactions of plants and animals around her.  She spent her childhood reconstructing deer skeletons to understand how bones and joints functioned and creating endless mini-ecosystems in plastic bottles to watch how they changed over time.  This love of discovery, observation, questioning, and experimentation led her to many technician jobs, independent research projects, and graduate research study at Purdue University.  At Purdue she studies the factors influencing oak regeneration after ecologically based timber harvest and prescribed fire.  While Skye’s primary focus is ecological research, she loves getting to leave the lab and bring science into classrooms to inspire the next generation of young scientists and encourage all students to be always asking why!

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

SaveSave

Fair traders or freeloaders?

Measuring chlorophyll content in the greenhouse

Measuring chlorophyll content in the greenhouse

The activities are as follows:

When two species do better when they cooperate than they would on their own, the relationship is called a mutualism. One example of a mutualism is the relationship between a type of bacteria, rhizobia, and legume plants. Legumes include plants like peas, beans, soybeans, and clover. Rhizobia live in bumps on the legume roots, where they trade their nitrogen for sugar from the plants. Rhizobia fix nitrogen from the air into a form that plants can use. This means that legumes that have rhizobia living in their roots can get more nitrogen than those that don’t.

Under some conditions, this mutualism can break down. For example, if one of the traded resources is very abundant in the environment. When the plant doesn’t need the nitrogen traded by rhizobia, it doesn’t trade as many sugars to the rhizobia. This could cause the rhizobia to evolve to be less cooperative as well. Less-cooperative rhizobia may be found where the soil already has lots of nitrogen. These less-cooperative bacteria are freeloaders: they fix less nitrogen, but still get sugars from the plant and other benefits of living in nodules on their roots.

Photo by Tomomi Suwa, 2013

Rhizobia nodules on plant roots. In exchange for carbon and protection in the nodules from plants, rhizobia provide fixed nitrogen for plants.

One very important legume crop species is the soybean. Soybeans are used to produce vegetable oil, tofu, soymilk, and many other food products. Soybeans trade with rhizobia for nitrogen, but often farmers add more nitrogen into the field as fertilizer. Since farms use a lot of nitrogen fertilizer, researchers at KBS were interested in how different types of farming affected the plant-rhizobia mutualism.

They grew soybean plants in a greenhouse and added rhizobia from three different farms: a high N farm, low N farm, and organic farm that used no N fertilizer. After four weeks, the researchers measured chlorophyll content of the soybean plants. Healthy plants that have lots of nitrogen will have high chlorophyll content, and plants with not enough nitrogen will have low chlorophyll content. Because high nitrogen could lead to the evolution of less-cooperative rhizobia, they expected that rhizobia from organic plots would be most cooperative. They predicted rhizobia from high N plots would be the least cooperative, and rhizobia from low N plots would fall somewhere in the middle. More-cooperative rhizobia provide more nitrogen, so the researchers expected plants grown with cooperative rhizobia to have higher chlorophyll content than plants receiving less-cooperative rhizobia.

Featured scientist: REU Jennifer Schmidt from the Kellogg Biological Station

Flesch–Kincaid Reading Grade Level = 10.1

For more information on the evolution of cheating rhizobia, check out these popular science articles:

If you are interested in performing your own classroom experiment using the plant-rhizobium mutualism, check out this paper published in the American Biology Teacher describing methods and a proposed experimental design: Suwa and Williamson 2014

SaveSave