Make way for mummichogs

Collecting mummichogs and other fish out of research traps.

Collecting mummichogs and other fish out of research traps.

The activities are as follows:

Salt marshes are important habitats and contain a wide diversity of species. These ecosystems flood with salt water during the ocean’s high tide and drain as the tide goes out. Fresh water also flows into marshes from rivers and streams. Many species in the salt marsh can be affected when the movement of salt and fresh water across a tidal marsh is blocked by human activity, for example by the construction of roads. These restrictions to water movement, or tidal restrictions, can have many negative effects on salt marshes, such as changing the amount of salt in the marsh waters, or blocking fish from accessing different areas.

Local managers are working to remove tidal restrictions and bring back valuable habitat. At the same time, scientists are working to study how the remaining tidal restrictions impact fish populations. To do this, they measure the number of fish found upstream of tidal restrictions, which is the side connected to the river’s freshwater but cut off from the ocean when the restriction is in place. By taking measurements before and after the restriction is removed, scientists can study the impacts that the restriction had on fish populations

Mummichogs are a small species of fish that live in tidal marshes all along the Atlantic coast of the United States.

Mummichogs are a small species of fish that live in tidal marshes all along the Atlantic coast of the United States.

Mummichogs are a small species of fish that live in tidal marshes all along the Atlantic coast of the United States. They can be found in most streams and marsh areas and are therefore a valuable tool for scientists interested in comparing different marshes. The absence of mummichogs in a salt marsh is likely a sign that it is highly damaged.

In Gloucester, MA, students participating in Mass Audubon’s Salt Marsh Science Project are helping Liz and Robert use mummichogs to examine the health of a salt march. In 2002 and 2003 Liz, Robert, and the students set traps upstream of a road, which was acting as a tidal restriction. These traps collected mummichogs and other species of fish. The day after they set the traps, the students counted the number of each fish species found in the traps.

Students participating in Mass Audubon’s Salt Marsh Science Project Count fish at Eastern Point Wildlife Sanctuary, Gloucester, MA

Students participating in Mass Audubon’s Salt Marsh Science Project Count fish at Eastern Point Wildlife Sanctuary, Gloucester, MA

In December 2003, a channel was dug below the road to remove the tidal restriction and restore the marsh. From 2004 to 2007, students in the program continued to place traps in the same upstream location and collect data in the same way each year. Students then compared the number of fish from before the restoration to the numbers found after the restriction was removed. The students thought that once the tidal restriction was removed, mummichogs would return to the upstream locations in the marsh.

Featured scientists: Liz Duff and Robert Buchsbaum from Mass Audubon. Written by: Maria Maradianos, Samantha Scola, and Megan Wagner.

Flesch–Kincaid Reading Grade Level = 10.9

trap_locations

Additional teacher resources related to this Data Nugget:

Lizards, Iguanas, and Snakes! Oh My!

The Common Side-blotched Lizard

The Common Side-blotched Lizard

The activities are as follows:

Throughout history people have settled mainly along rivers and streams. Easy access to water provides resources to support many people living in one area. In the United States today, people have settled along 70% of rivers.

Today, rivers are very different from what they were like before people settled near them. The land surrounding these rivers, called riparian habitats, has been transformed into land for farming, businesses, or housing for people. This urbanization has caused the loss of green spaces that provide valuable services, such as water filtration, species diversity, and a connection to nature for people living in cities. Today, people are trying to restore green spaces along the river to bring back these services. Restoration of disturbed riparian habitats will hopefully bring back native species and all the other benefits these habitats provide.

Scientist Mélanie searching for reptiles in the Central Arizona-Phoenix LTER.

Scientist Mélanie searching for reptiles in the Central Arizona-Phoenix LTER.

Scientists Heather and Mélanie are researchers with the Central Arizona-Phoenix Long-Term Ecological Research (CAP LTER) project. They want to know how restoration will affect animals living near rivers. They are particularly interested in reptiles, such as lizards. Reptiles play important roles in riparian habitats. Reptiles help energy flow and nutrient cycling. This means that if reptiles live in restored riparian habitats, they could increase the long-term health of those habitats. Reptiles can also offer clues about the condition of an ecosystem. Areas where reptiles are found are usually in better condition than areas where reptiles do not live.

Heather and Mélanie wanted to look at how disturbances in riparian habitats affected reptiles. They wanted to know if reptile abundance (number of individuals) and diversity (number of species) would be different in areas that were more developed. Some reptile species may be sensitive to urbanization, but if these habitats are restored their diversity and abundance might increase or return to pre-urbanization levels. The scientists collected data along the Salt River in Arizona. They had three sites: 1) a non-urban site, 2) an urban disturbed site, and 3) an urban rehabilitated site. They counted reptiles that they saw during a survey. At each site, they searched 21 plots that were 10 meters wide and 20 meters long. The sites were located along 7 transects, or paths measured out to collect data. Transects were laid out along the riparian habitat of the stream and there were 3 plots per transect. Each plot was surveyed 5 times. They searched for animals on the ground, under rocks, and in trees and shrubs.

Featured scientists: Heather Bateman and Mélanie Banville from Arizona State University. Written by Monica Elser from Arizona State University.

Meet the scientist! Click here to watch a video where scientist Heather explains her research!

Flesch–Kincaid Reading Grade Level = 9.8

Can a salt marsh recover after restoration?

Students collecting salinity data at a transect point. The tall tan grass is Phragmites.

Students collecting salinity data at a transect point. The tall tan grass is Phragmites.

The activities are as follows:

In the 1990s, it was clear that the Saratoga Creek Salt Marsh in Rockport, MA was in trouble. The invasive plant, Phragmites australis, covered large areas of the marsh. The thick patches of Phragmites crowded out native plants and reduced the number of animals, especially migrating birds, because it was too thick to land in. Salt marshes are wetland habitats near ocean coasts that have mostly water-loving, salt-tolerant grasses. Human activity was having a huge effect on the health of the Saratoga Creek Salt Marsh by lowering the salinity, or salt concentrations in the water. Drains built by humans to keep water from rainstorms off the roads changed how water moved through the marsh. The storm drains added a lot of runoff, or freshwater and sediments from the surrounding land, into the marsh after rainstorms. Adding more freshwater to the marsh lowers salinity. The extra sediment that washed into the marsh raised soil levels along the road. If the soil levels get too high, the salty ocean water does not make it into the marsh during high tide. Perhaps these storm drains were changing the salinity of the marshes in a way that helped Phragmites because it grows best when salinity levels are low.

In 1998, scientists, including members of the Rockport Conservation Commission and students from the Rockport Middle School science club, began to look at the problem. They wanted to look at whether freshwater runoff from storm drains may be the reason Phragmites was taking over the marsh. They were curious whether the salinity would increase if they made the storm water drain away from the marsh. They also thought this would stop the runoff sediments from raising soil levels. If so, this could be one way to restore the health of the salt marsh and reduce the amount of Phragmites.

In 1999, a ditch was dug alongside the road to collect runoff from storm drains before it could enter the marsh. A layer of sediment was also removed from the marsh so ocean water could reach the marsh once again. Students set up transects, specific areas chosen to observe and record data. Then they measured the growth and abundances of Phragmites found in these transects. They also measured water salinity levels. Transects were 25 meters long and data were collected every meter. The students decided to compare Phragmites data from before 1999 and after 1999 to see if diverting the water away from the marsh made a difference. They predicted that the number and height of Phragmites in the marsh would go down after freshwater runoff was reduced after restoration.

Screen Shot 2015-08-18 at 5.05.46 PM

View of Saratoga Creek Salt Marsh several years after restoration, showing location of one of the transects. Native grasses are growing in the foreground.

View of Saratoga Creek Salt Marsh several years after restoration, showing location of one of the transects. Native grasses are growing in the foreground.

Featured scientists: Liz Duff from Mass Audubon, Eric Hutchins from NOAA, and Bob Allia and 7th graders from Rockport Middle School

Written by: Bob Allia, Cindy Richmond, and Dave Young

Flesch–Kincaid Reading Grade Level = 9.5

For more information on this project, including datasets and more scientific background, check out their website: Salt Marsh Science