A difficult drought

A field of switchgrass studied by biofuels researchers.

The activities are as follows:

Most people use fossil fuels like natural gas, coal, and oil daily. We use them to generate much of the energy that gets us from place to place, power our homes, and more. Fossil fuels are very efficient at producing energy, but they also come with negative consequences. For example, when burned, they release greenhouse gases like carbon dioxide into our atmosphere. The right balance of greenhouse gasses is needed to keep our planet warm enough to live on. However, because we have burned so many fossil fuels, the earth has gotten too hot too fast, resulting in climate change. Scientists are looking for other ways to fuel our lives with less damage to our environment.

Substituting fossil fuels with biofuels is one of these options. Biofuels are fuels made from plants. Unlike fossil fuels, which take millions of years to form, biofuels are renewable. They are made from plants grown and harvested every few years. Using biofuels instead of fossil fuels can be better for our environment because they do not release ancient carbon like burning fossil fuels does. In addition, the plants made into biofuels take in carbon dioxide from the atmosphere as they grow.

To become biofuels, plants need to go through a series of chemical and physical processes. The sugar stored in plant cells must undergo fermentation. In this process, microorganisms, like yeast, transform the sugars into ethanol that can be used for fuels. Trey is a scientist at the Great Lakes Bioenergy Center. He is interested in seeing how yeast’s ability to transform sugar into fuel is affected by environmental conditions in fields, such as temperature and rainfall.

When there was a major drought in 2012, Trey used the opportunity to study the impacts of drought. The growing season had very high temperatures and very low rainfall. These conditions make it more difficult for plants to grow, including switchgrass, a prairie grass being studied as a potential biofuel source.

Trey knew that drought affects the amount and quality of switchgrass that can be harvested. He wanted to find out if drought also had effects on the ability of yeast to transform the plants’ sugars into ethanol. Stress from droughts is known to cause a build-up of compounds in plant cells that help them survive during drought. Trey thought that these extra compounds might harm the yeast or make it difficult for the yeast to break down the sugars during the fermentation process. Trey and his team predicted that if they fed yeast a sample of switchgrass grown during the 2012 drought, the yeast would struggle to ferment its sugars and produce fewer biofuels as a result.  

To test their idea, the team studied two different sets of switchgrass samples that were grown and collected in Wisconsin. One set of switchgrass was grown in 2010 under normal conditions. The other set was grown during the 2012 drought. The team introduced the two samples to yeast in a controlled setting and performed four fermentation tests for each set of switchgrass. They recorded the amount of ethanol produced during each test.

Featured scientists: Trey Sato from the University of Wisconsin-Madison. Written by Marina Kerekes.

Flesch–Kincaid Reading Grade Level = 8.2

Additional teacher resources related to this Data Nugget include:

There are other Data Nuggets that share biofuels research. Search this table for “GLBRC” to find more! Some of the popular activities include:

The Great Lakes Bioenergy Research Center (GLBRC) has many biofuel-related resources available to K16 educators on their webpage.

For activities related specifically to this Data Nugget, see:

Breathing in, Part 1

Susan stands in a reforestation experiment near the Chesapeake Bay.

The activities are as follows:

Photosynthesis is the process by which trees and other plants trap the sun’s energy within the molecular bonds of glucose (C6H12O6), a type of sugar. During photosynthesis, oxygen (O2) is released as a byproduct. For this reason, trees are often portrayed as the lungs of the planet “breathing out” oxygen.

Oxygen is then used by living things for cellular respiration. Your cells use oxygen to free the energy stored within glucose. That is why you, and most living things, need oxygen to survive.

But there’s another aspect of photosynthesis that’s just as important as the release of oxygen. Look at a tree or other plant out your window – how did it get so big? The answer is in the equation for photosynthesis. Carbon dioxide (CO2) and water (H2O) provide the carbon, hydrogen, and oxygen needed to build glucose. Trees use glucose as both an energy source and construction material. As they grow, they arrange glucose in long, winding structures. Some of this carbon becomes part of the plant for as long as they live. This means that the carbon that builds plants comes from the air! This process of pulling carbon out of the atmosphere and holding on to it for long periods of time is known as carbon sequestration or carbon accumulation. It’s what the trees do when they use photosynthesis to “breathe in.”

These processes caught Kristina’s interest. She wanted to know more about how carbon accumulation differed across the globe. So, in 2006, she and a small team of scientists created a database using information from 91 studies on carbon in trees.

In the meantime, Susan was working at the Nature Conservancy and getting tons of questions from people who wanted to plant new forests to help fight climate change. People wanted to know what kinds of forests to plant, and how much carbon they might be able to accumulate. Susan, like Kristina, knew that carbon accumulation differed across the globe and wanted to give people the right numbers for the right places. She started gathering carbon data by sifting through thousands of scientific papers. In the process, she found Kristina’s work. One day, Susan called Kristina to chat.

Kristina and Susan decided they needed to work together to learn more about how carbon accumulation rates differ across various types of forests found around the world. So, they set out to build on previous research and get more accurate measurements. Instead of doing their own new study, they needed to gather data from thousands of existing studies in locations from all over the earth. So that’s exactly what they did. Kristina and Susan, along with an international team of researchers, began their work creating ForC, the Global Forest Carbon Database.

ForC is an open-access database containing over 40,000 records from more than 10,000 plots in over 1,500 geographic areas. All of the data come from published research by scientists and include studies from every forested climate zone. It is a living database that is always being updated as scientists publish their work, making it the most complete source of forest carbon data in the world! It was exactly what Kristina and Susan needed.

Kristina and Susan used ForC to investigate global carbon capture by young regrowing forests. Based on their previous research, they thought that, since tropical forests regrow fastest due to a year-round warm and wet climate, they would have the highest rate of carbon accumulation. In order to study carbon accumulation, they selected 13,112 measurements from young, regrowing (<30 years old) forests around the world. They grouped measurements by forest type, averaged them, and compared their data. With these values, they could inform policy decisions and prioritize forest regrowth in parts of the world that would have the highest impact. Review the table below for information on the six main forest types that Kristina and Susan studied.

Featured scientists: Kristina J. Anderson-Teixeira, Smithsonian Conservation Biology Institute & Susan C. Cook-Patton, The Nature Conservancy. Written by Ryan Helcoski.

Flesch–Kincaid Reading Grade Level = 9.1

Additional classroom resources for this Data Nugget:
If you would like to explore the ForC database in your classroom, students can view the shiny app. Anyone that feels even more ambitious can see the raw data.

Here are two scientific articles related to this activity:

Cook-Patton, SC, Leavitt, SM, Gibbs, D. et al. 2020. Mapping carbon accumulation potential from global natural forest regrowth. Nature 585, 545–550.

Anderson KJ, Allen AP, Gillooly JF, Brown JH. 2006. Temperature-dependence of biomass accumulation rates during secondary succession. Ecology Letters Jun: 9(6):673-82.

Streams as sensors: Arctic watersheds as indicators of change

Jay taking field notes next to a rocky Tundra stream.

The activities are as follows:

The Arctic, Earth’s region above 66° 33’N latitude, is home to a unique biome, known as tundra. A defining trait of tundra ecosystems is the frozen land. Permafrost is the underground layer of organic matter, soil, rock, and ice that has been frozen for at least 2 full years. Plant material decays slowly in the Arctic because of the cold temperatures. Building up over thousands of years, the plants become frozen into the permafrost. Permafrost represents a very large “sink” of dead plant material, nutrients, and soil that is locked away in a deep freeze. 

Though the Alaskan Arctic may seem far away from where you live, tundra permafrost is important for the entire globe. During the past few thousand years, Earth’s climate has naturally changed a little over time, but because humans are adding greenhouse gases to the atmosphere, the average global temperature may increase by as much as 2 to 4oC over the next century. As a result of global climate change, permafrost has become less stable. By causing warmer and wetter conditions in the Arctic, thawing permafrost soils release ancient material that was previously frozen and locked away. Two important materials are dissolved nitrogen (N), which is a nutrient critical for plant growth, and carbon (C), which is stored in plant matter during photosynthesis. These released materials can be used again by plants, but some is carried away as melted water flows from the land into rivers and streams. You can imagine N and C in permafrost like a bank account where the landscape is the savings account. The land slowly deposits or withdraws N and C from the savings account, while the water receives any excess N and C that the land does not save.

Arial downloads data from a water quality monitoring station at the Kuparuk River. The station is connected a sensor that stays in the river and takes a reading for both carbon and nitrogen concentrations every 15 minutes.

The water that melts as permafrost thaws flows into a stream, ultimately ending up in an ocean. Watersheds are the network of streams and rivers that flow to a single point as they empty out into the ocean. The water at the end of the watershed therefore reflects all the changes that happened across a large area. Scientists use Arctic watersheds as large “sensors” to understand how and when landscapes may be releasing material from thawing permafrost. 

Because the Alaskan Arctic is a vast, sparsely populated area, scientists often rely on established field stations to conduct experiments, collect observational data, and develop new understanding of Arctic ecosystems. One of these field sites is Toolik Field Station. Scientists working at Toolik have been monitoring terrestrial and aquatic Arctic ecosystems since the late 1970s. 

Arial and Jay are aquatic scientists who work at Toolik. They are interested in how Arctic watersheds respond to climate change. Together, Arial and Jay act like ecosystem accountants: they use the chemistry within the water to monitor changes in ecosystem budgets of C and N. Arial and Jay used both historic data and water quality sensors deployed in 2017 and 2018 to monitor the N and C budget in the Kuparuk River. They use this data to calculate how much N and C the river is spending. They measure this as the total export in units of mass per year. This mass per year is determined by multiplying concentration (mass/volume) by flow (volume/day) and adding these values across the whole season (mass/year). These budgets at the watershed outlet help reveal signals of how this tundra landscape may be changing. In this way, they can assess if the landscape savings account for N and C is being depleted due to climate change. 

Featured scientists: Arial Shogren and Jay Zarnetske from Michigan State University

Flesch–Kincaid Reading Grade Level = 10.8

The carbon stored in mangrove soils

Tall mangroves growing close to the coast.

The activities are as follows:

In the tropics and subtropics, mangroves dominate the coast. There are many different species of mangroves, but they are all share a unique characteristic compared to other trees – they can tolerate having their roots submerged in salt water.

Mangroves are globally important for many reasons. They form dense forested wetlands that protect the coast from erosion and provide critical habitat for many animals. Mangrove forests also help in the fight against climate change. Carbon dioxide is a greenhouse gas that is a main driver of climate change. During photosynthesis, carbon dioxide is absorbed from the atmosphere by the plants in a mangrove forest. When plants die in mangrove forests, decomposition is very slow. The soils are saturated with saltwater and have very little oxygen, which decomposers need to break down plants. Because of this, carbon is stored in the soils for a long time, keeping it out of the atmosphere.

Sean is a scientist studying coastal mangroves in the Florida Everglades. Doing research in the Everglades was a dream opportunity for Sean. He had long been fascinated by the unique plant and animal life in the largest subtropical wetland ecosystem in North America. Mangroves are especially exciting to Sean because they combine marine biology and trees, two of his favorite things! Sean had previously studied freshwater forested wetlands in Virginia, but had always wanted to spend time studying the salty mangrove forests that exist in the Everglades. 

Sean Charles taking soil samples amongst inland short mangroves.

Sean arrived in the Everglades with the goal to learn more about the factors important for mangrove forests’ ability to hold carbon in their soils. Upon his arrival, he noticed a very interesting pattern – the trees were much taller along the coast compared to inland. This is because mangroves that grow close to the coast have access to important nutrients found in ocean waters, like phosphorus. These nutrients allow the trees to grow large and fast. However, living closer to the coast also puts trees at a higher risk of damage from storms, and can lead to soils and dead plants being swept out to sea. 

Sean thought that the combination of these two conditions would influence how much carbon is stored in mangrove soils along the coast and inland. Larger trees are generally more productive than smaller ones, meaning they might contribute more plant material to soils. This led Sean to two possible predictions. The first was that there might be more carbon in soils along the coast because taller mangroves would add more carbon to the soil compared to shorter inland mangroves. However, Sean thought he might also find the opposite pattern because the mangroves along the coast have more disturbance from storms that could release carbon from the soils. 

To test these competing hypothesis, the team of scientists set out into the Everglades in the Biscayne National Park in Homestead, Florida. Their mission was to collect surface soils and measure mangrove tree height. To collect soils, they used soil cores, which are modified cylinders that can be hammered into the soil and then removed with the soil stuck in the tube. Tree height was measured using a clinometer, which is a tool that uses geometry to estimate tree height. They took these measurements along three transects. The first transect was along the coast where trees had an average height of 20 meters. The second transect between the coast and inland wetlands where trees were 10 meters tall, on average. The final transect was inland, with average tree height of only 1 meter tall.  With this experimental design Sean could compare transects at three distances from the coast to look for trends. 

Once Sean was back in the lab, he quantified how much carbon was in the soil samples from each transect by heating the soil in a furnace at 500 degrees Celsius. Heating soils to this temperature causes all organic matter, which has carbon, to combust. Sean measured the weight of the samples before and after the combustion. The difference in weight can be used to calculate how much organic material combusted during the process, which can be used as an estimate of the carbon that was stored in the soil. 

Featured scientist: Sean Charles from Florida International University

Flesch–Kincaid Reading Grade Level = 9.6

Additional teacher resources related to this Data Nugget: