A burning question

Fire crew in a woodland prescribed fire.

The activities are as follows:

Forests in the midwestern U.S. provide many important ecological services. They store carbon dioxide, which helps fight climate change. They also host a variety of plant and animal life. Forests provide spaces for recreation and support local economies through tourism.

Unfortunately, forests face threats. Climate change is causing more severe weather events, such as flooding and droughts. The spread of some parasites and diseases is also increasing as temperatures change. Forest managers are motivated to protect forest health. They can help combat these threats with their knowledge of different management practices.

Ellen and John have studied forest health in Wisconsin for decades. Ellen first became interested in nature while camping and hiking in Minnesota with her family when she was young. John became passionate about nature as a child while walking through the oak-hickory forests on his family farm. They teamed up with foresters from the Wisconsin Department of Natural Resources to examine the impact of prescribed fire as a management tool to increase forest health. A prescribed fire differs from a wildfire in that it is a planned fire that is set on purpose. When the conditions are right, forest managers will assign prescribed fires to specific areas to meet land management objectives. A lot of organization goes into prescribed fires to make sure the fire doesn’t spread or burn too hot.

Fire is part of the natural history of oak forests. They are adapted to recover quickly and they actually can benefit from fire. This is important for land managers who want to encourage the health of oak forests.

Ellen recording plant species diversity in a plot.

Oaks are considered a keystone species. This means they play a major role in maintaining ecosystem functions and the success of other species. There are two main reasons. First, they produce large amounts of acorns, which are food for many types of wildlife. Second, their canopies have more open spaces that allow light to reach the forest floor. Light is an important resource for plants, and smaller plants are limited by the shade of large trees. More light passing through the canopy allows more plants to grow below the oak trees. This increases the variety of species found in oak forests.

Ellen and John wanted to know if there were more plant species in oak forests that had prescribed fires. To answer their question, Ellen and John decided to study a part of the Madison School Forest in southwestern Wisconsin. This oak forest is special because research has been done on the impact of fire for over 75 years. In 1996, the forest was split into 15 units that have been under different management plans. One of the experimental treatments included prescribed fire at different frequencies. For example, the units in the prescribed fire treatment could have been burned every 1 to 4 years. Other units served as a control and were not burned. Comparing the control to plots that had been burned allows managers to see how often oak forests should be burned to increase forest health.

All of the management units were sampled in 1996 when the experiment first began and again in 2002 and 2007. In each sampling year, the number of plant species, or species richness, in the management units was counted. In 2023, Ellen, John, and their team resampled the plots to pick up this experiment where it was left off. This research will guide the best ways to support the health of oak forests and determine how important fire is to maintaining forest biodiversity. If fire is necessary to maintain oak forests, and oaks are a keystone species that support biodiversity, the research team expects to find higher biodiversity in plots where prescribed fire has been used.

Featured scientists: Ellen Damschen (she/her) and John Orrock (he/him) from
University of Wisconsin-Madison. Written by: Amy Workman (she/her)

Flesch–Kincaid Reading Grade Level = 8.8

The prairie burns with desire

Stuart showing an Echinacea flower setting seed.

The activities are as follows:

Fire plays a crucial role for prairie habitats across North America. Native Americans have long observed that lush and green pastures grow after a wildfire. In many areas, it is part of current and historical native culture to imitate this natural process by deliberately burning the prairie in a controlled way. This land management practice has many benefits, such as helping native grasses form seeds, thinning out plants, and enhancing habitat for prairie animals. By using controlled fires to cultivate these areas, Native Americans increase the availability of food and connect to the environment and their cultural traditions.

Some land management agencies plan prescribed burns to increase the health of prairie ecosystems. However, fire is still suppressed in many North American prairies due to the possible damage to human development. In these areas, scientists have observed that fire suppression contributes to local plant species extinctions, but we do not know why.

Stuart is a scientist interested in how fire can help prairie plants. In the late 1990s, Stuart was in central Minnesota searching for prairie plants in the Echinacea genus. The prairie was ablaze with flowers, so he had no difficulty finding plenty of plants. He tagged each plant so that he could study them again in the future. However, when he returned the following year, the field had almost no flowers! He kept returning to this same field. A few years later he found the site was again filled with flowers. That year there had been a prairie fire. Visually seeing the impacts of fire on the landscape is a memory he will not forget.

Stuart became interested in learning more about how fire affects the reproduction of native prairie plants. He knew that Echinacea plants grow in many places, but they have a hard time making seeds. This genus cannot self-pollinate, meaning they must be fertilized with pollen from a genetically different plant. Echinacea plants are also dependent on insects, such as bees, to pollinate them.

Echinacea flower

In 1996, a research team started collecting data on Echinacea plants in a large research site in Minnesota. This prairie site had a schedule for prescribed burns, or controlled fires that are started by experts to manage the land. These burns would happen every 4-6 years during the spring.

The team established a set of plot locations that they visited each summer. They searched for and mapped the location of all flowering Echinacea plants within these plots. They took measurements on each Echinacea plant – whether it was flowering, and the distance to its second closest Echinacea neighbor.

Stuart decided to take a new look at this long-term dataset. He had two ideas for how fire might be helping Echinacea plants. First, fire might help all the plants get on the same schedule and make flowers at the same time. This synchrony, or flowering at the same time, could help pollen get from one flower to another. Second, fire might remove competing plants from the area, opening up bare ground for new seeds to establish. This would allow Echinacea plants to be closer to one another, again making it easier for pollen to move between flowers.

With these data, Stuart could compare years with and without prescribed burns to see whether fire helped Echinacea flowering. To look at whether fire decreased the space between blooming Echinacea plants, he looked at the distance between a focal plant and its second-closest neighbor. To see whether fire increased the synchrony of flowering, Stuart used the data to calculate the proportion of Echinacea plants that were in bloom during the summer sampling period.

Featured scientist: Stuart Wagenius from the Chicago Botanic Gardens Written by: Harrison Aakre

Flesch–Kincaid Reading Grade Level = 8.6

Additional teacher resources related to this Data Nugget:

More information about the Echinacea project, based in Minnesota. There are additional datasets to explore, blog posts from the field, identification guides, and pictures of the experiments.

Article to learn about cultural perspectives that are traditionally not represented in textbooks. Native Americans have, and continue to incorporate ecology, observations, and making sense of patterns for millennia.

For more information about indigenous knowledges, or traditional ecological knowledge, check out the following websites:

Published journal article about this research. Wagenius, S. et al. 2020. Fire synchronizes flowering and boosts reproduction in a widespread but declining prairie species. Proceedings of the National Academy of Sciences.