Getting to the roots of serpentine soils

Alexandria in the field observing the plants and soil.

When an organism grows in different environments, some traits change to fit the conditions. For example, if a houseplant is grown in the shade, it might grow to stretch out long and thin to reach as much light as possible. If that same plant were grown in the sun, it would grow thicker stems and more leaves that are not spread as far apart. This response to the environment helps plants grow in the different conditions they find themselves in.

Flexibility is especially important when a plant is living in a harsh environment. One such environment is serpentine soils. These soils are created from the weathering of the California state rock, Serpentinite. Serpentine soils have high amounts of toxic heavy metals, do not hold water well, and have low nutrient levels. Low levels of water and nutrients found in serpentine soils limit plant growth. In addition, a high level of heavy metals in serpentine soils can actually poison the plant with magnesium!

Combined, these qualities make it so that most types of plants are not able to grow on serpentine soils. However, some plant species have traits that help them tolerate these harsh conditions. Species that are able to live in serpentine soils, but can also grow in other environments, are called serpentine-indifferent.

Alexandria has been working with serpentine soils since 2011 when she was first introduced to them during an undergraduate research experience with her ecology professor. Alexandria was especially intrigued by this challenging environment and how organisms are able to thrive in it, even with the harsh characteristics.

Dot-seed plantain plants in the growth chamber.

To learn more, she started to read articles about previous research on plants that can only grow in serpentine soils. Alexandria learned that these plant species are generally smaller than closely related species. This was interesting, but she still had questions. She noticed the other experiments had compared plant size in different species, not within one species. She thought the next step would be to look at how plants that are the exact same species would respond to serpentine and non-serpentine soil environments. To explore this question, she would need to use serpentine-indifferent plant species because they can grow in serpentine soils and other soils.

Just as a houseplant grows differently in the sun or shade, plants grown in serpentine and non-serpentine soils might change to survive in their environment. Alexandria thought one of these changes could be happening in the roots. She decided to focus on plant roots because of their importance for plant survival and health. Roots are some of the first organs that many plants produce and anchor them to the ground. Throughout a plant’s life, the roots are essential because they bring nutrients to above-ground organs such as leaves. Because serpentine soils have fewer plant nutrients and are drier than non-serpentine soils, Alexandria thought that plants growing in serpentine soils may not invest as much into large root systems. She predicted plants growing in serpentine soils will have smaller roots than plants growing in non-serpentine soils.

To test her ideas, she studied the effects of soil type on a serpentine-indifferent plant species called Dot-seed plantain. She purchased seeds for her experiment from a local commercial seed company. About 5 seeds were planted in serpentine or non-serpentine soils in a growth chamber where growing conditions were kept the same. After the seedlings emerged, the plants were thinned so that there was one plant per pot. The only difference in the environment was the soil type. This allowed Alexandria to attribute any differences in root length to serpentine soils. At the end of her experiment, she pulled the plants out of the soil and measured the root lengths of plants in both treatments.

Featured scientist: Alexandria Igwe (she/her) from University of Miami

Flesch–Kincaid Reading Grade Level = 8.7

Additional resources related to this Data Nugget:

The topics described in this Data Nugget are similar to the published research in the following article:

  • Igwe, A.N. and Vannette, R.L. 2019. Bacterial communities differ between plant species and soil type, and differentially influence seedling establishment on serpentine soils. Plant Soil: 441: 423-437

There is a short video of Alexandria (Allie) sharing her research on serpentine soils.

There have been several news stories and blog posts about this research:

Raising Nemo: Parental care in the clown anemonefish

Clown anemonefish caring for their eggs.

Clown anemonefish caring for their eggs.

The activities are as follows:

When animals are born, some offspring are able to survive on their own, while others rely on parental care. Parental care can take many forms. One or both parents might help raise the young, or in some species other members of the group help them out. The more time and energy the parents invest, the more likely it is that their offspring will survive. However, parental care is costly for the parents. When a parent invests time, energy, and resources in their young, they are unable to invest as much in other activities, like finding food for themselves. This results in a tradeoff, or a situation where there are costs and benefits to the decisions that must be made. Parents must balance their time between caring for their offspring and other activities.

The severity of the tradeoff between parental care and other activities may depend on environmental conditions. For example, if there is a lot of food available, parents may spend more time tending to their young because finding food for themselves takes less time and energy. Scientists wonder if parents are able to adjust their parental care strategies in response to environmental changes.

Photo of Tina (left) with other members of her lab. The glowing blue tanks around them all contain anemonefish!

Photo of Tina (left) with other members of her lab. The glowing blue tanks around them all contain anemonefish!

Tina is a scientist studying the clown anemonefish. She is interested in how parental care in this species changes in response to the environment. She chose to study anemonefish because they use an interesting system to take care of their young, and because the environment is always changing in the coral reefs where they live.

Anemonefish form monogamous pairs and live in groups of up to six individuals. The largest female is in charge of the group. Only the largest male and female get to mate and take care of the young. Both parents care for eggs by tending them, mouthing the eggs to clean the nest and remove dead eggs, and fanning eggs with their fins to oxygenate them. A single pair may breed together tens or even hundreds of times over their lifetimes. But here is the cool part – anemonefish can change their sex! If the largest female dies, the largest male changes to female, and the next largest fish in line becomes the new breeding male. That means that a single parent may have the opportunity to be a mother and a father during its lifetime.

Parents will fan the eggs to increase oxygen by the nest, or mouth them to remove dead eggs and clean the nest.

Parents will fan the eggs to increase oxygen by the nest, or mouth them to remove dead eggs and clean the nest.

On the reef, anemonefish groups also experience shifts in how much food is available. In years with lots of food, the breeding pair has lots of young, and in years with little food they do not breed as often. Tina presumed that food availability determines how much time and energy the parents invest in parental care behaviors. She collected data from 20 breeding pairs of fish, 10 of which she gave half rations of food, and 10 of which she gave full rations. The experiment ran for six lunar months. Every time a pair laid a clutch of eggs, Tina waited 7 days and then took a 15-minute video of the parents and their nest. She watched the videos and measured three parental care behaviors: mouthing, fanning, and total time spent tending for both males and females. Some pairs laid eggs more than once, so she averaged these behaviors across the six months of the experiment. Tina predicted that parents fed a full ration would perform more parental care behaviors, and for a longer amount of time, than parents fed a half ration.

Watch video of the experimental trials, demonstrating the mouthing and fanning behaviors:

Featured scientist: Tina Barbasch from Boston University

Flesch–Kincaid Reading Grade Level = 9.4

barbasch_photoAbout Tina: I first became interested in science catching frogs and snakes in my backyard in Ithaca, NY. This inspired me to major in Biology at Cornell University, located in my hometown. As an undergraduate, I studied male competition and sperm allocation in the local spotted salamander, Ambystoma maculatum. After graduating, I joined the Peace Corps and spent 2 years in Morocco teaching environmental education and 6 months in Liberia teaching high school chemistry. As a PhD student in the Buston Lab, I study how parents negotiate over parental care in my study system the clownfish, Amphiprion percula, otherwise known as Nemo. More here!