When a species can’t stand the heat

An adult male tuatara. Photo by Scott Jarvie.

An adult male tuatara. Photo by Scott Jarvie.

The activities are as follows:

Tuatara are a unique species of reptile found only in New Zealand. While they look like lizards, they are actually in their own reptile group. Tuatara are the only species remaining on the planet from this lineage, one that dates back to the time of the dinosaurs! Similar to tortoises, they are extremely long-lived and can sometimes live over 100 years. Tuatara start reproducing when they are about 15-20 years old and they breed infrequently.

North Brother Island, one of the small New Zealand islands where tuatara are still found today.

North Brother Island, one of the small New Zealand islands where tuatara are still found today. Photo by Jo Monks.

The sex of tuatara is not determined by sex chromosomes (X or Y), as in humans. Instead, the temperature of the nest during egg development is the only factor that determines the sex of tuatara embryos. If the egg develops with a low temperature in the nest it will be female, but if it develops with a high temperature it will be male. This process happens in many other species too, including some turtles, crocodiles, lizards, and fish. However, most species are the opposite of tuatara, and produce females at the warmest temperatures.

Today, tuatara face many challenges. Humans introduced new predators to the large North and South Islands of New Zealand. Tuatara used to live on these main islands, but predators led them to local extinction. Today they survive only on smaller offshore islands where they can escape predation. Because many of these islands are small, tuatara can have low population numbers that are very vulnerable to a variety of risk factors. One of the current challenges faced by these populations is climate change. Similar to the rest of the world, climate change is resulting in temperatures that are getting higher and higher in New Zealand, and the warm temperatures may impact tuatara reproduction.

Kristine collecting data on a tuatara in the field.

Kristine collecting data on a tuatara in the field. Photo by Sue Keall.

North Brother Island has a small population of tuatara (350-500 individuals) that has been studied for decades. Each tuatara has been marked with a microchip (like the ones used on pet dogs and cats), which allows scientists to identify and measure the same individuals repeatedly across years. In the 1990s, a group of scientists studying tuatara on this island noticed that there were more males than females (60% males). The scientists started collecting data on the number of males and females so they could use long-term data to track whether the sex ratio, or the ratio of males and females in the population, became more balanced or became even more male-biased over time. The sex ratio is important because when there are fewer females in a population, there are fewer individuals that lay eggs and produce future offspring. Generally, a population that is highly male-biased will have lower reproduction rates than a population that is more balanced, or is female-biased.

Because tuatara are long-lived and breed infrequently, the scientists needed to follow the sex ratio for many years to be sure they were capturing a true shift in the sexes over time. In 2012, Kristine and her colleagues decided to use this long-term data to see if the sex ratio is changing as New Zealand warms. Since the temperature of the nest determines sex, and temperature is going up due to climate change, they predicted that there would be a greater proportion of males in the population over time. This would be reflected in an unbalanced sex ratio that is moving further and further away from 50% males and 50% females.

Graph showing mean annual temperatures for New Zealand, made by the National Institute of Water and Atmospheric Research. The y-axis represents the difference in that year’s mean temperature from the average temperature from 1981-2010. Red bars mean the year was warmer than average, and blue mean it was colder. The black line is the trend from 1909 to 2015 (0.92 ± 0.26°C/100 years).

Graph showing mean annual temperatures for New Zealand, made by the National Institute of Water and Atmospheric Research. The y-axis represents the difference in that year’s mean temperature from the average temperature from 1981-2010. Red bars mean the year was warmer than average, and blue mean it was colder. The black line is the trend from 1909 to 2015 (0.92 ± 0.26°C/100 years).

Featured scientists: Kristine Grayson from University of Richmond, Nicola Mitchell from University of Western Australia, and Nicola Nelson from Victoria University of Wellington

Flesch–Kincaid Reading Grade Level = 11.5

Additional teacher resources related to this Data Nugget:


kgAbout Kristine: Kristine L. Grayson received her Ph.D. in 2010 from the University of Virginia under the mentorship of Dr. Henry Wilbur. Her thesis used mark-recapture methods to examine migration behavior in a pond-breeding amphibian. She received an NSF International Research Fellowship to Victoria University of Wellington in New Zealand to conduct research on sex-ratio bias under climate change in tuatara, an endemic reptile. One of Kristine’s claims to fame is capturing the state record holding snapping turtle for North Carolina – 52 pounds! In addition to her passion for amphibian and reptile conservation, Kristine’s current work also examines the spread potential of gypsy moth, an invasive forest pest in North America. Kristine currently is an Assistant Professor in the Biology Department at University of Richmond.

SaveSave

The Arctic is Melting – So What?

A view of sea ice in the Artic Ocean.

A view of sea ice in the Artic Ocean.

The activities are as follows:

Think of the North Pole as one big ice cube – a vast sheet of ice, only a few meters thick, floating over the Arctic Ocean. Historically, the amount of Arctic sea ice would be at a maximum in March. The cold temperatures over the long winter cause the ocean water to freeze and ice to accumulate. By September, the warm summer temperatures cause about 60% of the sea ice to melt every year. With global warming, more sea ice is melting than ever before. If more ice melts in the summer than is formed in the winter, the Arctic Ocean will become ice-free, and would change the Earth as we know it.

Student drills through lake ice

Student drills through lake ice

This loss of sea ice can have huge impacts on Arctic species and can also affect climate around the globe. For example, polar bears stand on the sea ice when they hunt. Without this platform they can’t catch their prey, leading to increased starvation. Beyond the Arctic, loss of sea ice can increase global climate change through the albedo effect (or the amount of incoming solar radiation that is reflected by a surface). Because ice is so white, it has high albedo and reflects a lot of the sunlight that hits it and keeps the earth cooler. Ice’s high albedo is why it seems so bright when the sun reflects off snow. When the ice melts and is replaced by water, which has a much lower albedo, more sunlight is absorbed by the earth’s surface and temperatures go up.

Scientists wanted to know whether the loss of sea ice and decreased albedo could affect extreme weather in the northern hemisphere. Extreme weather events are short-term atmospheric conditions that have been historically uncommon, like a very cold winter or a summer with a lot of rain. Extreme weather has important impacts on humans and nature. For example, for humans, extreme cold requires greater energy use to heat our homes and clear our roads, often increasing the use of fossil fuels. For wildlife, extreme cold could require changes in behavior, like finding more food, building better shelter, or a moving to a warmer location.

Student releases weather balloon

Student releases weather balloon

To make predictions about how the climate might change in the coming decades to centuries, scientists use climate models. Models are representations, often simplifications, of a structure or system used to make predictions. Climate models are incredibly complex. For example, climate models must describe, through mathematical equations, how water that evaporates in one region is transferred through the atmosphere to another region, potentially hundreds of miles away, and falls to the ground as precipitation.

James is a climate scientist who, along with his colleagues, wondered how the loss of arctic sea ice would affect climates around the globe. He used two well-established climate models – (1) the UK’s Hadley Centre model and (2) the US’s National Center for Atmospheric Research model. These models have been used previously by the Intergovernmental Panel on Climate Change (IPCC) to predict how much sea ice to expect in 2100.

Featured scientists: James Screen from University of Exeter, Clara Deser from National Center for Atmospheric Research, and Lantao Sun from University of Colorado at Boulder. Written by Erin Conlisk from Science Journal for Kids.

Flesch–Kincaid Reading Grade Level = 10.2

Earth Science Journal for KidsThis Data Nugget was adapted from a primary literature activity developed by Science Journal For KidsFor a more detailed version of this lesson plan, including a supplemental reading, videos, and extension activities, visit their website and register for free!

There is one scientific paper associated with the data in this Data Nugget. The citation and PDF of the paper is below.

You can play this video, showing changes in Arctic sea ice from 1987-2014, overhead at the start of class (no sound required). Each student should write down a couple of observations and questions.

What Do Trees Know About Rain?

A cypress pine, or Callitris columellaris. This species is able to survive in Australia’s dry climates.

A cypress pine, or Callitris columellaris. This species is able to survive in Australia’s dry climates.

The activities are as follows:

Did you know that Australia is the driest inhabited continent in the world? Because it is so dry, we need to be able to predict how often and how much rain will fall. Predictions about future droughts help farmers care for their crops, cities plan their water use, and scientists better understand how ecosystems will change. The typical climate of arid northwest Australia consists of long drought periods with a few very wet years sprinkled in. Scientists predict that climate change will cause these cycles to become more extreme – droughts will become longer and periods of rain will become wetter. When variability is the norm, how can scientists tell if the climate is changing and droughts and rain events today are more intense than what we’ve seen in the past?

To make rainfall predictions for the future, scientists need data on past rainfall. However, humans have only recorded rainfall in Australia for the past 100 years. Because climate changes slowly and goes through long-term cycles, scientists need very long term datasets of rainfall.

Scientist Alison coring a cypress pine

Scientist Alison coring a cypress pine

The answer to this challenge comes from trees! Using dendrochronology, the study of tree rings, scientists get a window back in time. Many tree species add a ring to their trunks every year. The width of this ring varies from year to year depending on how much water is available. If it rains a lot in a year, the tree grows relatively fast and ends up with a wide tree ring. If there isn’t much rain in a year, the tree doesn’t grow much and the ring is narrow. We can compare the width of rings from recent years to the known rain data humans have collected. Then, assuming the same forces that determine tree ring width are operating today as in the past, we can go back and interpret how much rain fell in years where we have no recorded rainfall data. This indirect information from tree rings is known as a proxy, and helps us infer data about past climates.

For this study, the scientists used cypress-pine, or Callitris columellaris. This species is able to survive in Australia’s dry climates and is long lived enough to provide data far back in time. Fortunately, scientists don’t have to cut down the trees to see their rings. Instead, they use a corer – a hollow metal drill with the diameter of a straw. They drill it through the tree all the way to its core, and extract a sample of the tissue that shows all the tree rings. The scientists took 40 cores from 27 different cypress-pine trees. The oldest trees in the sample were more than 200 years old. Next, they developed a chronology where they lined up ring widths from one tree with all the other trees, wide with wide and narrow with narrow. This chronology gives them many replicate samples, and data going back all the way to the 19th century! Next, they used a dataset of rainfall from rain gauges that have been set out in Australia since 1910. They then take this precipitation data and overlay it with the tree ring widths since 1910. For tree rings before 1910, they then project back in time using a rainfall formula.

These videos, demonstrating the science of dendrochronology, could be a great way to spark class discussions:

Featured scientist: Alison O’Donnell from University of Western Australia

Flesch–Kincaid Reading Grade Level = 8.0

Earth Science Journal for KidsThis Data Nugget was adapted from a primary literature activity developed by Science Journal For Kids. For a more detailed version of this lesson plan, including a supplemental reading, videos, and extension activities, visit their website and register for free!

There is one scientific paper associated with the data in this Data Nugget. The citation and PDF of the paper is below.

Growth rings from a Callitirs tree.

Growth rings from a Callitirs tree.

Invasion Meltdown: Will Climate Change Make Invasions Even Worse?

The invasive plant, Centaurea stoebe

The invasive plant, Centaurea stoebe

The activities are as follows:

Humans are changing the earth in many ways, including warming the planet by burning fossil fuels and adding greenhouse gasses to the atmosphere. Scientists have documented rising temperatures across the globe and predict an increase of 3° C in Michigan within the next 100 years. Humans are also changing the earth by transporting species across the globe, introducing them into new habitats. These introduced species may cause problems in their new habitats. Additionally, increasing temperature from climate change may change the way that native and introduced plants and animals interact.

All living organisms have a range of temperatures they are able to survive in, and temperatures where they perform their best. For example, arctic penguins do best in the cold, while tropical parrots prefer warmer temperatures. The same is true for plants. Depending on the temperature preferences of a plant species, warming temperatures due to climate change may either help or harm that species.

Scientists collecting abundance and performance data on the plants in the heating rings.

Scientists collecting abundance and performance data on the plants in the heating rings.

Scientists are concerned that invasive species may do better in the warmer temperatures caused by climate change. Invasive species have been introduced from one area into another, and now thrive in their new habitat. Invasive species harm native species and cause many problems for humans. There are several reasons to expect that invasive species may benefit from climate change. First, because invasive species have already survived transport from one habitat to another, they may be species that are better able to handle change, such as temperature changes. Second, the new habitat of an invasive species may have temperatures that allow it to survive, but are too low for the invasive species to do their absolute best. This could happen if the invasive species was transported from somewhere warm to somewhere cold. Climate change could increase temperatures enough to put the new habitat in the species’ range of preferred temperatures, making it ideal for the invasive species to grow and survive.

A view of the plants growing in a heated ring. Notice the purple flowers of Centaurea stoebe.

A view of the plants growing in a heated ring.
Notice the purple flowers of Centaurea stoebe.

To determine if climate change will benefit invasive species, scientists at Michigan State University focused on one of the worst invasive plants in Michigan, Centaurea stoebe (spotted knapweed). They looked at Centaurea plants growing in a field experiment with eight rings. Half of the rings were left with normal, ambient air temperatures. The other half of the rings were heated using ceramic heaters attached to the side of the rings. These heaters successfully raised air temperatures by 3° C. At the end of the summer, the scientists collected all of the Centaurea plants from the rings. They recorded both the (1) abundance, or number of Centaurea plants within a square meter, and (2) the biomass (dry weight of living material) of the plants in a square meter as a measure of performance.

Featured scientists: Katie McKinley, Mark Hammond, and Jen Lau from Michigan State University

Flesch–Kincaid Reading Grade Level = 8.6

Salmon in Hot Water

The activities are as follows:

Cover_picture_Larson_2014

Pacific salmon are important members of freshwater and ocean food webs. Salmon transport nutrients from the ocean to freshwater habitats, and traces of these nutrients can be found in everything from trees to bears! Salmon also support sport and commercial fisheries, and are used for ceremonial purposes by Native Americans. Climate change poses a threat to salmon populations by warming the waters of streams and rivers where they reproduce. To maintain healthy populations, salmon rely on cold, freshwater habitats and may go extinct as temperatures rise in coming decades. Warm temperatures can cause large salmon die-offs. However, some salmon individuals have higher thermal tolerance and are better able to survive when water temperatures rise.

Eggs used in QTL experiment

Eggs used in QTL experiment

Salmon individuals and populations may be better able to survive in warmer waters because they have certain gene variants that help them survive under these conditions. Scientists want to know whether there is a genetic basis for the variation observed in salmon’s thermal tolerance. If differences in certain genes control variation in thermal tolerance, scientists can identify the location on the genome responsible for this very important adaptation. Once identified, management agencies could then screen for these genes in populations of salmon in order to identify individuals that could better survive in a future warmer environment. Hatchery programs could also breed thermally tolerant fish in an attempt to preserve this important fish species.

Scientists working in the lab

Scientists working in the lab

To identify the genes responsible for a particular trait, scientists look for Quantitative Trait Loci (QTL). A QTL is a genetic variant that influences the phenotype of a polygenic trait, such as human height or skin color, and perhaps thermal tolerance in salmon. Scientists can find QTL by conducting experimental mattings then examining the phenotypic and genetic characteristics of the offspring. In this study, parent fish from one population of salmon, some that are tolerant to warm water and some that are not, mated and produced offspring. These offspring now had a mix of genetic backgrounds from their parents, meaning that some offspring inherited genetic variants that made them more tolerant to high temperatures and some did not. Each offspring was tested for their thermal tolerances, and had their genomes sequenced. Differences in the genome between offspring that are tolerant and those that are not reveal areas of the genome that are correlated with thermal tolerance and survival in warm water. If differences in certain genes control variation in thermal tolerance, the scientists predicted they could find regions in the salmon genome that are correlated with survival in warm water.

Featured scientists: Wesley Larson, Meredith Everett, and Jim Seeb from the University of Washington

Flesch–Kincaid Reading Grade Level = 10.9

There are two scientific papers associated with the data in this Data Nugget. The citations and PDFs of the papers are below. The lab webpage can be found here.

Check out these Stated Clearly videos to explore DNA and genes with students!

Springing Forward: Does climate change cause plants to flower earlier?

Scientist Shaun collecting phenology data in the climate change experiment. He is recording the date that the first flowers emerge for dame’s rocket.

Sean Mooney, a high school researcher, collecting phenology data in the climate change experiment. He is recording the date that the first flowers emerge for dame’s rocket.

The Reading Level 1 activities are as follows:

The Reading Level 3 activities are as follows:

Every day we add more greenhouse gases to our air by burning fossil fuels, such as oil, coal, and natural gas. Greenhouse gasses trap the sun’s heat, so adding more causes the Earth to heat up!  What does that mean for the species on our planet? The timing of life cycle events for plant and animals, like flowering and migration, are largely determined by cues organisms take from the environment. Scientists studying phenology, or the timing of life cycle events, are interested in how climate change will influence different species. For example, with warming temperatures and unpredictable transitions between seasons, what can we expect to happen to the migration timings of birds, mating seasons for animals, or flowering times of plants?

Scientists collecting phenology data in the climate change experiment. They are recording the date that the first flowers emerge for dame’s rocket.

Scientists collecting phenology data in the climate change experiment.

Plants are the foundation for almost all life on Earth. Through photosynthesis, plants produce O2 that we breathe, food for animals and microbes, and crops that provide food and materials for human society. Because plants are so important, we need to find out how climate change will affect them. One good place to start is by looking at flowering plants. How will increased temperatures affect the phenology of flowering? If the date that flowers first emerge for a species is driven by temperature, then we would expect flowers to emerge earlier when temperatures are higher. If flowers start emerging earlier each year due to climate change, this could greatly impact plant reproduction and could cause problems for pollinators who count on plants flowering at the same times each year.

Scientists Shaun, Mark, Elizabeth, and Jen wanted to know if higher temperatures lead to earlier flowering dates for plants. They chose to look at flowers of dame’s rocket, a leafy plant that is related to the plants we use to make mustard! Mark planted dame’s rocket in eight plots of land. Plots were randomly assigned to one of two treatments. Half of the plots were left to experience normal temperatures (ambient), while the other four received a heating treatment to simulate climate change (heated). Air temperatures in heated plots increased by 3°C, which mimics climate change projections for what Michigan will experience by the end of the century. Mark, Elizabeth, and Jen measured the date that each plant grew its first flower, and the survival of each plant. The scientists predicted that dame’s rocket growing in the heated plots would flower earlier than those in the normal plots.

 Featured scientists: Shaun Davis from Thornapple Kellogg Middle School and Mark Hammond, Elizabeth Schultheis, and Jen Lau from Michigan State University

Flesch–Kincaid Reading Grade Level = The Reading Level 3 activity has a score of 9.8; the Level 1 has a 7.0.

Flowers of Hesperis matronalis (dame’s rocket), a species of mustard that was introduced to the U.S. from Eurasia.

Flowers of Hesperis matronalis (dame’s rocket), a species of mustard that was introduced to the U.S. from Eurasia.

Additional teacher resources related to this Data Nugget include:

  • If you would like your students to interact with the raw data, we have attached the original data here. The file also includes weather data over the course of the experiment if students want to ask and explore independent questions.
  • For a lesson plan that uses citizen science phenology datasets to examine changes in phenology over 30+ year timespans, and address the scientific question, “Do we see evidence for climate change in the phenology of plants and animals?”, click here.
  • Many phenology datasets are freely available online (many collected by citizen scientists). These datasets are extremely useful because scientists (and your students!) can examine average trends in timing shifts over periods of decades and often in different regions. Phenology datasets available online:

SaveSave

SaveSave

SaveSave

SaveSave

Coral bleaching and climate change

A Pacific coral reef with many corals

A Pacific coral reef with many corals

The activities are as follows:

Corals are animals that build coral reefs. Coral reefs are home to many species of animals – fish, sharks, sea turtles, and anemones all use corals for habitat! Corals are white, but they look brown and green because certain types of small plants, called algae, live inside them. The algae produce food for the corals so they can grow big, and the corals provide the algae a safe home. The algae and corals form a mutualism, or a relationship between two species where both partners benefit each other and do better together than they would alone.

When the water gets too warm, algae can no longer live inside corals. The corals turn from green to white, called coral bleaching, because they do not have algae living in them. Climate change has been causing the Earth’s air and oceans to get warmer. With warmer oceans, coral bleaching is happening more often. If the water stays too warm, bleached corals will die without their algae mutualists.

Scientist Carly working on a coral reef

Scientist Carly working on a coral reef

Carly is a scientist who wanted to study coral bleaching so she could help protect corals and coral reefs. One day, Carly observed an interesting pattern. Corals on one part of a reef were bleaching while corals on another part of the reef stayed healthy. She wondered, why? Why can some corals and their algae still work together when the water is warm while others cannot?

Ocean water that is closer to the shore (inshore) gets warmer than water further away (offshore). Perhaps corals and algae from inshore reefs are used to warm water. She wondered whether inshore corals were better able to work with their algae in warm water because they are used to these temperatures. If so, inshore corals and algae may bleach less often than offshore corals and algae. Carly designed an experiment to test this. She collected 15 corals from inshore and 15 from offshore reefs in the Florida Keys. She brought them into an aquarium lab for research. She cut each coral in half and put half of each coral into tanks with normal water and the other half into tanks with heaters. The normal water temperature was 27°C and is a temperature that both inshore and offshore corals experience during the year. The warm water tanks were 31°C and are a temperature that inshore corals experience, but offshore corals never experienced in the past but may experience with climate change in the future. After six weeks she recorded the number of corals that bleached in each tank.

 Featured scientist: Carly Kenkel from The University of Texas at Austin

Flesch–Kincaid Reading Grade Level = 7.9

There are two scientific papers associated with the data in this Data Nugget. The citations and PDFs of the papers are below. The lab webpage can be found here.

If your students are looking for more data on coral bleaching, check out HHMI BioInteractive’s classroom activity in which students use authentic data to assess the threat of coral bleaching around the world. Also, check out the two videos below!

  • Another BioInteractive video, appropriate for upper level high school classrooms. Visualizes the process of coral bleaching at different scales. Video includes lots of complex vocabulary about cells and the process of photosynthesis.

 

The ground has gas!

Measuring nitrogen (N2O) gas escaping from the soil in summer.

Measuring nitrogen (N2O) gas escaping from the soil in summer. Photo credit: Julie Doll, Michigan State University

The activities are as follows:

If you dig through soil, you’ll notice that soil is not hard like a rock, but contains many air pockets between soil grains. These spaces in the soil contain gases, which together are called the soil atmosphere. The soil atmosphere contains the same gases as the atmosphere that surrounds us above ground, but in different concentrations. It has the same amount of nitrogen, slightly less oxygen (O2), 3-100 times more carbon dioxide (CO2), and 5-30 times more nitrous oxide (N2O, which is laughing gas!).

Measuring nitrogen (N2O) gas escaping from the soil in winter.

Measuring nitrogen (N2O) gas escaping from the soil in winter. Photo credit: Julie Doll Michigan State University.

Nitrous oxide and carbon dioxide are responsible for much of the warming of the global average temperature that is causing climate change. Sometimes soils give off, or emit, these greenhouse gases into the earth’s atmosphere, adding to climate change. Currently scientists are working to figure out why soils emit different amounts of these greenhouse gasses.

During the summer of 2010, researchers at Michigan State University studied nitrous oxide (N2O) emissions from farm soils. They measured three things: (1) the concentration of nitrous oxide 25 centimeters below the surface of the soil (2) the amount of nitrous oxide leaving the soil (3) and the average temperature on the days that nitrous oxide was measured. The scientists expected that the amount of nitrous oxide entering the atmosphere would depend on how much nitrous oxide was in the soil and on the temperature.

Featured scientist: Iurii Shcherbak from Michigan State University

Flesch–Kincaid Reading Grade Level = 9.2

More information on the research associated with this Data Nugget can be found hereInformation on the effects of climate change in Michigan can be found here.

Data associated with this Data Nugget can be found on the MSU LTER website data tables under GLBRC Biofuel Cropping System Experiment. Bioenergy research classroom materials can be found here. More images can be found on the LTER website.

logo