Mangroves on the move

mangrove in marsh
A black mangrove growing in the saltmarshes of northern Florida.

The activities are as follows:

All plants need nutrients to grow. Sometimes one nutrient is less abundant than others in a particular environment. This is called a limiting nutrient. If the limiting nutrient is given to the plant, the plant will grow in response. For example, if there is plenty of phosphorus, but very little nitrogen, then adding more phosphorus won’t help plants grow, but adding more nitrogen will. 

Saltmarshes are a common habitat along marine coastlines in North America. Saltmarsh plants get nutrients from both the soil and the seawater that comes in with the tides. In these areas, fertilizers from farms and lawns often end up in the water, adding lots of nutrients that become available to coastal plants. These fertilizers may contain the limiting nutrients that plants need, helping them grow faster and more densely.

One day while Candy, a scientist, was out in a saltmarsh in northern Florida, she noticed something that shouldn’t be there. There was a plant out of place. Normally, saltmarshes in that area are full of grasses and other small plants—there are no trees or woody shrubs. But the plant that Candy noticed was a mangrove. Mangroves are woody plants that can live in saltwater, but are usually only found in tropical places that are very warm. Candy thought the closest mangrove was miles away in the warmer southern parts of Florida. What was this little shrub doing so far from home? The more that Candy and her colleague Emily looked, the more mangroves they found in places they had not been before.

Candy and Emily wondered why mangroves were starting to pop up in northern Florida. Previous research has shown nitrogen and phosphorus are often the limiting nutrients in saltmarshes. They thought that fertilizers being washed into the ocean have made nitrogen or phosphorus available for mangroves, allowing them to grow in that area for the first time. So, Candy and Emily designed an experiment to figure out which nutrient was limiting for saltmarsh plants. 

mangrove saltmarsh researchers
Candy (right) and Emily (left) measure the height of a black mangrove growing in the saltmarsh.

For their study, Candy and Emily chose to focus on black mangroves and saltwort plants. These two species are often found growing together, and mangroves have to compete with saltwort. Candy and Emily found a saltmarsh near St. Augustine, Florida, in which they could set up an experiment. They set up 12 plots that contained both black mangrove and saltwort. Each plot had one mangrove plant and multiple smaller saltwort plants. That way, when they added nutrients to the plots they could compare the responses of mangroves with the responses of saltwort. 

To each of the 12 plots they applied one of three conditions: control (no extra nutrients), nitrogen added, and phosphorus added. They dug two holes in each plot and added the nutrients using fertilizers, which slowly released into the nearby soil. In the case of control plots, they dug the holes but put the soil back without adding fertilizer.

Candy and Emily repeated this process every winter for four years. At the end of four years, they measured plant height and percent cover for the two species. Percent (%) cover is a way of measuring how densely a plant grows, and is the percentage of a given area that a plant takes up when viewed from above. Candy and Emily measured percent cover in 1×1 meter plots. The cover for each species could vary from 0 to 100%.

Featured scientists: Candy Feller from the Smithsonian Environmental Research Center and Emily Dangremond from Roosevelt University

Flesch–Kincaid Reading Grade Level = 8.3

Limit by limit: Nutrients control algal growth in Arctic streams

The Arctic Stream Team. Frances, Breck, Abby, Alex, Jay, and Arial at Toolik Field Station in 2019. 

The activities are as follows:

You rely on the nutrients from the foods you eat to grow and thrive. Other organisms, like microbes, do as well! Aquatic algae, a type of microbe that live in the water, need to take in nutrients from their surroundings for growth. Two important nutrients for algal growth are nitrogen (N) and phosphorous (P).

Sometimes the environment does not have all the nutrients that aquatic algae need to grow. When one nutrient is less available compared to others, algae can become nutrient limited. Research on nutrient limitation started with Justus Liebig, a 19th century scientist who proposed the “law of the minimum.” The law states that the nutrient available in the lowest amount relative to demand will limit overall growth and production. This means that growth is not controlled by all the nutrients, but by the scarcest one (the “limiting factor”). When more than one nutrient limits growth, algae are considered co-limited. This just means that a combination of two nutrients are needed for algae to grow. Knowing what nutrients are limiting growth helps scientists understand how an ecosystem is working.  

From other research we know that many ecosystems, including those in the Alaskan Arctic, are phosphorus-limited. Scientists figured this out because they found if they added phosphorus, then algae growth increased. However, climate change could change this. As the Arctic warms, ecosystems on land might start to release nutrients in higher amounts or new proportions into the water. These extra nutrients will likely cause increases in algae growth in streams and ponds, which in turn could change food webs and nutrient cycling. It is therefore important to understand which nutrients are currently limiting algae growth before climate change changes things even more. This starts with tests to see how Arctic algae grow in response to changes in N, P, and N and P in the water.  

A team of scientists got to work on this question! Arial, Jay, Frances, Alex, Breck, and Abby are all interested in understanding how climate change may alter nutrient limitations in Arctic streams. Each team member has a unique role in the larger research project. For example, undergraduate researcher Abby spent her 2019 summer at Toolik Field Station in Northern Alaska as part of a research opportunity. She explored nutrient limitation in one particular lake, called Lake I8. 

Abby used small cups that placed into the streams that fed into Lake I8. These cups were filled with agar gel, a material used in labs to grow microbes. Each cup contained different nutrient treatments. Abby used four different treatments in her cups: (1) a control (agar only), (2) agar + nitrogen, (3) agar + phosphorus, and (4) agar + nitrogen + phosphorus. On the top of each cup, she placed a glass disk to provide a surface for the algae to grow.

A. Cups before going into the stream. B. Abby putting out her cup treatments into an Arctic stream. C. Cups incubating under water in an Arctic stream. D. Analyzing Chlorophyll a extracted from the cups. 

Abby put 5 replicate cups for each treatment at both the Inlet and Outlet streams on the I8 Lake. She left them underwater for 4 weeks. She brought the cups back to the lab to measure the algae that grew on each glass disk. Abby measured how much algae grew on each disk by measuring the amount of Chlorophyll a, the green pigment that helps plants photosynthesize. The more pigment, the more the algae is growing. Abby compared the data from the control to each of the other treatments. When there is more growth in a treatment compared to the control, that means a particular nutrient was limiting at that location. Abby expected that the streams would be limited by the amount of phosphorus, but not the amount of nitrogen. She predicted algae would grow more when they are given additional phosphorus compared to the control treatment.

Featured scientists: Abigail Rec from Gettysburg College; Frances Iannucci, Alex Medvedeff, and Breck Bowden from University of Vermont; Arial Shogren and Jay Zarnetske from Michigan State University

Flesch–Kincaid Reading Grade Level = 8.6

The carbon stored in mangrove soils

Tall mangroves growing close to the coast.

The activities are as follows:

In the tropics and subtropics, mangroves dominate the coast. There are many different species of mangroves, but they are all share a unique characteristic compared to other trees – they can tolerate having their roots submerged in salt water.

Mangroves are globally important for many reasons. They form dense forested wetlands that protect the coast from erosion and provide critical habitat for many animals. Mangrove forests also help in the fight against climate change. Carbon dioxide is a greenhouse gas that is a main driver of climate change. During photosynthesis, carbon dioxide is absorbed from the atmosphere by the plants in a mangrove forest. When plants die in mangrove forests, decomposition is very slow. The soils are saturated with saltwater and have very little oxygen, which decomposers need to break down plants. Because of this, carbon is stored in the soils for a long time, keeping it out of the atmosphere.

Sean is a scientist studying coastal mangroves in the Florida Everglades. Doing research in the Everglades was a dream opportunity for Sean. He had long been fascinated by the unique plant and animal life in the largest subtropical wetland ecosystem in North America. Mangroves are especially exciting to Sean because they combine marine biology and trees, two of his favorite things! Sean had previously studied freshwater forested wetlands in Virginia, but had always wanted to spend time studying the salty mangrove forests that exist in the Everglades. 

Sean Charles taking soil samples amongst inland short mangroves.

Sean arrived in the Everglades with the goal to learn more about the factors important for mangrove forests’ ability to hold carbon in their soils. Upon his arrival, he noticed a very interesting pattern – the trees were much taller along the coast compared to inland. This is because mangroves that grow close to the coast have access to important nutrients found in ocean waters, like phosphorus. These nutrients allow the trees to grow large and fast. However, living closer to the coast also puts trees at a higher risk of damage from storms, and can lead to soils and dead plants being swept out to sea. 

Sean thought that the combination of these two conditions would influence how much carbon is stored in mangrove soils along the coast and inland. Larger trees are generally more productive than smaller ones, meaning they might contribute more plant material to soils. This led Sean to two possible predictions. The first was that there might be more carbon in soils along the coast because taller mangroves would add more carbon to the soil compared to shorter inland mangroves. However, Sean thought he might also find the opposite pattern because the mangroves along the coast have more disturbance from storms that could release carbon from the soils. 

To test these competing hypothesis, the team of scientists set out into the Everglades in the Biscayne National Park in Homestead, Florida. Their mission was to collect surface soils and measure mangrove tree height. To collect soils, they used soil cores, which are modified cylinders that can be hammered into the soil and then removed with the soil stuck in the tube. Tree height was measured using a clinometer, which is a tool that uses geometry to estimate tree height. They took these measurements along three transects. The first transect was along the coast where trees had an average height of 20 meters. The second transect between the coast and inland wetlands where trees were 10 meters tall, on average. The final transect was inland, with average tree height of only 1 meter tall.  With this experimental design Sean could compare transects at three distances from the coast to look for trends. 

Once Sean was back in the lab, he quantified how much carbon was in the soil samples from each transect by heating the soil in a furnace at 500 degrees Celsius. Heating soils to this temperature causes all organic matter, which has carbon, to combust. Sean measured the weight of the samples before and after the combustion. The difference in weight can be used to calculate how much organic material combusted during the process, which can be used as an estimate of the carbon that was stored in the soil. 

Featured scientist: Sean Charles from Florida International University

Flesch–Kincaid Reading Grade Level = 9.6

Additional teacher resources related to this Data Nugget: