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ABSTRACT 
Data are becoming increasingly important in science and society, and thus data literacy 
is a vital asset to students as they prepare for careers in and outside science, technolo-
gy, engineering, and mathematics and go on to lead productive lives. In this paper, we 
discuss why the strongest learning experiences surrounding data literacy may arise when 
students are given opportunities to work with authentic data from scientific research. First, 
we explore the overlap between the fields of quantitative reasoning, data science, and data 
literacy, specifically focusing on how data literacy results from practicing quantitative rea-
soning and data science in the context of authentic data. Next, we identify and describe 
features that influence the complexity of authentic data sets (selection, curation, scope, 
size, and messiness) and implications for data-literacy instruction. Finally, we discuss areas 
for future research with the aim of identifying the impact that authentic data may have 
on student learning. These include defining desired learning outcomes surrounding data 
use in the classroom and identification of teaching best practices when using data in the 
classroom to develop students’ data-literacy abilities.

INTRODUCTION
Throughout K–12 and undergraduate education, a strong emphasis is placed on the 
development of language literacy to help students understand and navigate everyday 
life. Similarly, with the rapidly expanding role of data in society, educators need to 
consider the importance of literacy in the context of data (Mayes et al., 2014; Wolff 
et al., 2017; National Academies of Sciences, Engineering, and Medicine [NASEM], 
2018). Data literacy involves the ability to understand and evaluate the information 
that can be obtained from data (Schield, 2004; Carlson et al., 2011; Mandinach and 
Gummer, 2013). A data-literate student should possess the appropriate quantitative 
and analytical tools necessary to address a problem and the ability to apply these tools 
in context to analyze, interpret, and communicate findings from data (Gibson and 
Mourad, 2018).

Data literacy lies at the intersection between the fields of quantitative reasoning 
and data science, while grounding both in authentic context (Figure 1). Both quanti-
tative reasoning and data science have distinguishing features, yet there is consider-
able overlap in learning outcomes surrounding the analysis and interpretation of data 
(Calzada Prado and Marzal, 2013). Both fields share important conceptual similari-
ties, and thus instruction in either area is likely to support the other while increasing 
data literacy.

Quantitative reasoning is the ability to apply mathematical principles to everyday 
problems through critical thinking and sound logic (Steen, 2004; Piatek-Jimenez 
et al., 2012; Boersma and Klyve, 2013; Vacher, 2014; Mayes et al., 2014). In science, 
quantitative reasoning covers a variety of skills, including the ability to understand 
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FIGURE 1. Venn diagram illustrating overlap between the fields of 
quantitative reasoning and data science, both within and outside 
authentic contexts. Data literacy lies at the intersection of these 
two fields when both are explored in an authentic context. 
Citations reference definitions of the fields, including discussions 
of overlap between the fields, found in the existing literature. 
Citations listed in the diagram: 1) Mayes et al., 2014; 2) Steen, 2004; 
Piatek-Jimenez et al., 2012; Boersma and Klyve, 2013; Vacher, 
2014; 3) Calzada Prado and Marzal, 2013; 4) Finzer, 2013; 
5) Baumer, 2015; 6) Schield, 2004; Carlson et al., 2011; Mandinach 
and Gummer, 2013; Gibson and Mourad, 2018.

numerical information found in graphs, tables, equations, and 
descriptive statistics and to express coherent and logical think-
ing about quantitative information (Mayes et al., 2014). In 
addition to specific skills, quantitative reasoning encompasses a 
learner’s emotional responses to quantitative information, 
including their attitudes, interest, and beliefs (Aikens and 
Dolan, 2014).

Data science education is a more recent movement with 
motivation and goals similar to quantitative reasoning. Data sci-
ence is an interdisciplinary field that embraces sophisticated 
analytical programming to draw out patterns and useful infor-
mation from the vast abundance of data available today 
(Baumer, 2015). Proficiency in data science relies on an under-
standing of the disciplinary context surrounding a data set, 
knowledge of math and statistical concepts, and possession of 
computer science skills (Conway, 2010; Finzer, 2013).

We predict that the strongest learning experiences surround-
ing data literacy will arise when students have the opportunity 
to engage in quantitative reasoning and data science while 
exploring data sets from scientific research. In this paper, we 
highlight learning opportunities in data literacy that can result 
from the use of data in secondary and postsecondary class-
rooms. To facilitate the use of data by educators and students, 
we identify and describe features that influence the complexity 
of data sets—scope, selection, curation, size, and messiness. 

Finally, we describe the resource and training needs of educa-
tors and identify areas for future research.

AUTHENTIC DATA IN THE SCIENCE CURRICULUM
Authentic data are true, quantitative or qualitative information, 
collected from real-life phenomena. Authentic data contrast 
with inauthentic data, which may be generated to demonstrate 
a particular pattern or result from manipulation of data to force 
a specific result or interpretation. Authentic data can be 
collected using a variety of methods, including the use of mea-
surement tools and automated sensors, or generated through 
models and simulations. These data sets can be collected by 
anyone, including scientists, students, and citizen scientists. For 
the purposes of this article, we will focus on authentic data 
resulting from scientific observations and investigations.

Scientists rely on many forms of authentic data, including 
data they collect themselves, data from collaborators, and data 
archived in online repositories where the scientist may have no 
direct connection to the individual or sensor that collected the 
data (Kastens et al., 2015). These sources fall into two general 
categories: firsthand data collected by the researcher themselves 
and secondhand data from a variety of external sources (National 
Research Council [NRC], 1996; Palincsar and Magnusson, 2001; 
Magnusson et al., 2004). Similarly for students, authentic data 
in the classroom may come in many forms, including stu-
dent-collected data from inquiry projects, searches of online 
data repositories, figures and tables in textbooks, or scientific 
publications (Hug and McNeill, 2008; Kerlin et al., 2010).

Using Authentic Data to Improve Data Literacy
Because data from scientific research are attached to the con-
text from which they were collected, the use of these authentic 
data sets in the classroom has the unique potential to develop 
student data literacy and draw out connections between 
quantitative reasoning and data science (Figure 1). Learning 
mathematics in the context of authentic data from scientific 
investigations reinforces the importance of math for answering 
questions and may more actively engage students in both math 
and science (Sorgo, 2010; American Association for the 
Advancement of Science [AAAS], 2011). In addition, experi-
ences working with authentic data have the potential to engage 
students in a broader suite of science practices and improve 
critical thinking (Kerlin et al., 2010; Gould et al., 2014; Holmes 
et al., 2015), particularly in the areas of analyzing and inter-
preting data, using mathematics and computational thinking, 
and engaging in argument from evidence (NRC, 2012; NGSS 
Lead States, 2013). In fact, student data literacy has been 
shown to improve when given opportunities to interact with 
authentic data (Duschl, 1990; Gould et al., 2014; Kastens et al., 
2015). Therefore, it is crucial that instructors not overlook the 
context of a data set as they help students develop their data- 
literacy abilities. Intentional focus should be placed on explor-
ing authentic situations and the mathematical ideas involved in 
solving or investigating them (Piatek-Jimenez et al., 2012; 
Common Core State Standards Initiative [CCSSI], 2014).

In addition to improving data literacy and engaging students 
in science practices, the use of authentic data in the classroom 
has the potential to be more interesting and engaging for stu-
dents (Schultheis and Kjelvik, 2015). When working without 
an understanding of context, the navigation of a database, 
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management of a data set, or interpretation of output from an 
online visualization platform may appear more daunting. Inau-
thentic experiences may fail to engage students, as context is 
removed and students are asked to explore patterns or trends 
without meaning. In addition, students may find results from 
inauthentic data more difficult to interpret than those from 
authentic data (Piatek-Jimenez et al., 2012; CCSSI, 2014), and 
students’ abilities to transfer new skills to novel contexts in and 
outside of the classroom may be reduced (Borges-Rey, 2017). In 
contrast, authentic data transform a typical lesson on data anal-
ysis or interpretation by providing real-world context and mak-
ing connections to disciplinary content, and students report 
feeling an increased emotional connection to data when they 
are better able to recognize practical application and relevance 
(Langen et al., 2014; Wolff et al., 2017). Connecting science to 
a learners’ experience makes content more accessible (Stoddart 
et al., 2010) and increases student interest in the material (Hul-
leman and Harackiewicz, 2009). By encouraging students to 
make connections between the data and their everyday lives, 
authentic data have the potential to give real-world relevance to 
data-literacy instruction and tap into students’ natural curiosity 
about their world (Doering and Veletsianos, 2007).

Features of Data Complexity
Data complexity has been shown to influence student learning 
and classroom discourse surrounding data. For example, in a 
study using earth science data, Kerlin and colleagues (2010) 
found that, while students had an easier time interpreting data 
from textbook graphs, those who used raw, complex data were 
more likely to identify patterns in data, make predictions, and 
evaluate the arguments made by fellow classmates. Addition-
ally, compared with the use of graphs from textbooks, class-

room discourse expanded when students worked with raw data 
(Kerlin et al., 2010).

Authentic data sets vary in their complexity in several ways 
that impact how they are used in the classroom and the learn-
ing opportunities afforded. Here, we identify and define several 
features of authentic data that influence complexity: scope, 
selection, curation, size, and messiness (Table 1). We identified 
these features by reflecting on our own experiences working 
with data, through discussions at conferences and working 
groups, and through a review of the literature. To define each 
feature, we reference the existing literature, and if a discussion 
of complexity is available for a feature, we identify those cita-
tions in Table 1. In addition, we describe the unique learning 
opportunities surrounding data literacy that each feature 
engenders and make suggestions for instruction.

Scope. The scope of a data set is determined by the breadth of 
the information contained within it. Scope is determined by the 
number of variables represented and the amount of information 
contained within each variable. Simple data sets consist of few 
variables and contain only appropriate information for the sci-
entific question being asked. Complex data sets may contain 
many variables and will provide both appropriate and inappro-
priate data (Berland and McNeill, 2010). Instructors can use 
data sets that are narrow in scope to provide experience identi-
fying dependent and independent variables and the relation-
ships between them. Moving to data sets that are broader in 
scope, students will face the additional challenge of determin-
ing which variables are necessary to address a scientific ques-
tion. In addition, data sets with more variables will provide the 
opportunity for open-ended investigations that may lead to 
unanticipated research questions.

TABLE 1. Features of authentic data that can be used to characterize data-centric classroom activities

Categories have been given for each feature, placed on a scale from simple to complex, based on the difficulty of the interaction for students. While features 
are represented in the table as discrete categories, they should instead be thought of along a continuum.
aFrom Berland and McNeill (2010).
bModified from Berland and McNeill (2010) and Kastens et al. (2015).
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Selection. Data selection involves making decisions as to 
which data are necessary to address a particular scientific ques-
tion. The data-selection process will differ depending on 
whether students are working with first- or secondhand data, 
and instructors can use both types of data sets to provide stu-
dents with the broadest experiences with this data feature. In 
activities that use secondhand data, students face challenges 
associated with data discovery, including finding and navigat-
ing online databases, locating appropriate data, evaluating the 
information they find, and interpreting variables and associated 
metadata files (Carlson et al., 2011; Calzada Prado and Marzal, 
2013; Langen et al., 2014). In activities relying on firsthand 
data collection, students must decide which data they need to 
collect and the methods and tools required to do so. This pro-
cess requires knowledge of the study system and how to design 
protocols for data collection. These abilities are captured by the 
quantification act, a component of quantitative reasoning that 
involves the process of assigning mathematical properties to an 
object such that it becomes data (Mayes et al., 2014). The quan-
tification act requires an understanding of appropriate units of 
measure and the proportional relationship of those units (Mayes 
et al., 2014).

By giving students opportunities to choose which data are 
needed for a particular investigation, instructors are allowing 
students to take ownership of a lesson and determine the direc-
tion of their learning (Gould et al., 2014). For secondhand data, 
instructors can build students’ abilities in data selection by 
beginning with experiences in which students are provided with 
only the data necessary to answer a particular scientific ques-
tion, followed by instances in which students must select the 
appropriate data from a larger pool (Table 1). Students can 
begin by selecting variables from a provided data set and then 
use open searches to identify data repositories and search inde-
pendently. For firsthand data, complexity can increase as 
instructors remove protocols, or instructions, for data collec-
tion. By starting with guided inquiry and moving to open 
inquiry, students will take on increasing responsibility for defin-
ing the data they collect or the methods they use.

Curation. Data curation involves the cleaning and preparation 
of data sets for visualization and analysis. Instructors will often 
provide students with well-organized, ready-to-use data sets to 
ease analysis and interpretation (Grimshaw, 2015). However, 
when curation is left to the student, several learning opportuni-
ties are afforded, specifically in areas of data science and liter-
acy (Carlson et al., 2011). Also referred to as handling data 
(Calzada Prado and Marzal, 2013), curation involves several 
processes such as tidying up data, summarizing raw data, or 
synthesizing multiple data sets. Tidying up data involves manip-
ulations and transformations to format a data set for analysis 
and visualization (Wickham, 2014). For example, in a tidy data 
set, the data have been organized such that each column rep-
resents a different variable and each row an observation of that 
variable (Wickham, 2014).

Statistics may be used when summarizing data to condense 
raw data down to measures such as sums, means, or measures 
of variability. Summarized data maintain authenticity so long as 
the curation process is done in a genuine way that reveals true 
patterns in data and does not obfuscate the truth. Thus, cura-
tion involves an understanding of ethical issues surrounding 

data and how data can be used transparently and honestly 
(Calzada Prado and Marzal, 2013). Providing students with 
opportunities to see and discuss how ethics play a role in data 
curation may lead them to be more critical consumers of data in 
their everyday lives.

Finally, synthesis of multiple data sets into one data set may 
be necessary depending on the research question. Synthesis 
requires organization of data so that they can be merged 
together. This includes working with data sets that may have 
asynchronous collection time frames, a mismatch of scale or 
location across variables, or missing data points or proper doc-
umentation. For larger data sets, curation involves familiarity 
with spreadsheets and coding software. By modeling the pro-
cess of data synthesis, and providing students with opportuni-
ties to synthesize data themselves, instructors can help students 
develop this important data science skill that is necessary for 
working with data collected from multiple sources.

Size. The size of a data set is defined by the number of data 
points it contains (Berland and McNeill, 2010). Large data sets 
contain 1) many attributes, captured by the number of columns 
and 2) many cases, captured in rows. The size of a data set 
determines whether students can work with it by hand, using 
paper and pencil, or whether they must work with the data set 
digitally (Krumhansl et al., 2012; Kastens et al., 2015). Instruc-
tors can use small data sets to provide an entry point for stu-
dents to have their first experiences working with data while 
practicing basic data-literacy skills, such as sketching simple 
graphs or using data as evidence to support a claim. Then, 
instructors can transition students to larger data sets to create 
opportunities for students to develop comfort and familiarity 
with digital tools, such as data visualization platforms or statis-
tical programs. To create a link between these two data forms, 
firsthand student data can be nested within larger data sets, 
potentially through the use of citizen science databases and 
programs (Kastens et al., 2015).

Messiness. Messiness is an important, yet often overlooked, 
feature of authentic data. The messiness of data sets is deter-
mined by the presence of variability, outliers, missing values, 
and unexpected trends. Messy data sets contain variability, 
which reflects both natural variation as well as variation from 
systematic error and precision of data-collection methods 
(Gould et al., 2014). Additionally, messy data sets may be 
incomplete or may have missing values due to events that took 
place during a study.

Because of these qualities, messy data create several learn-
ing opportunities that may not be available in other classroom 
activities such as interpreting textbook figures (Kerlin et al., 
2010), polished graphs from published studies (Harsh and 
Schmitt-Harsh, 2016), or inauthentic data sets designed to 
demonstrate a specific concept. Instructors can provide messy 
data sets to create opportunities for critical thinking during data 
exploration. For example, students typically fail to recognize 
that variability is a common feature of data (Lawson, 1995) and 
interpret small amounts of variation between treatments as 
meaningful, without consideration to whether the variation 
is from experimental error or represents a true difference 
(Germann and Aram, 1996). However, when instructors pro-
vide students with messy data, students are able to explore 
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sources of variability and become driven to explain unexpected 
patterns (Gould et al., 2014).

Instructors can incorporate data-centric activities that high-
light messy data in two forms: first- and secondhand data. 
Research has found that both sources lead to different learning 
experiences for students surrounding messiness, and the use of 
both first- and secondhand data can be complementary (Hug 
and McNeill, 2008). Firsthand data allow students to have 
direct experiences with data collection, leading to a better 
understanding of sources of variability, while secondhand data 
introduce increased complexity and more sources of variability 
beyond what can be collected in a classroom setting (Palincsar 
and Magnusson, 2001; Hug and McNeill, 2008; Langen et al., 
2014). Therefore, providing students with firsthand data expe-
riences followed by more complex secondhand data sets might 
be an effective way to build their abilities in dealing with messy 
data (Kastens et al., 2015).

Scaffolding Data Complexity
Use of complex, authentic data can be challenging for students 
of all ages, especially novices with few data or research experi-
ences to draw from. However, students do not need to jump 
into experiences with complex data all at once. The use of sim-
ple data sets may be a good starting point for instruction, yet 
relying solely on simple data will quickly become repetitive. 
Instead, using data sets that vary in complexity may engage 
students in a broader array of scientific practices and provide 
increased diversity of learning opportunities.

We hypothesize that intentionally scaffolding the features of 
data complexity, by using incrementally more complex data sets 
over time, may facilitate the development of students’ data- 
literacy abilities. Scaffolding, or providing instructional sup-
port, has been shown to be an effective strategy used to assist 
students in building complex skills (NRC, 2000). We suggest 
faded scaffolding, a modified version of scaffolding in which 
supports are gradually removed (McNeill et al., 2006), as a 
strategy to help students build their abilities using and inter-
preting data. Over time, the complexity of data-intensive activ-
ities can be gradually increased to continue to challenge the 
students, while not moving beyond their current problem-solv-
ing abilities. Instructors can use formative assessments to mon-
itor their students’ abilities and select appropriate data sets to 
build complexity over time (Table 1).

While the five features are correlated to some degree, it is 
possible to isolate them to some degree as well. For example, 
instructors may choose to start with a small data set that is lim-
ited in scope when first increasing complexity in other areas, 
such as messiness. As students become more proficient in their 
understanding of variability and unexpected results, instructors 
may choose to increase complexity in another area, such as 
selection or size.

DISCUSSION
The integration of data into contemporary K–16 education is 
gaining attention, and today data literacy is broadly recognized 
as an important aspect of training students for modern careers 
and developing a data-conscious citizenry (Finzer, 2013; Bau-
mer, 2015; NASEM, 2018). This is reflected in data analysis and 
interpretation becoming more commonplace throughout formal 
and informal education (Konold et al., 2000; Metz, 2008; Speth 

et al., 2010; Calzada Prado and Marzal, 2013) and the promo-
tion of data literacy throughout undergraduate and K–12 
reform efforts (NRC, 2012; College Board, 2013; NGSS Lead 
States, 2013; ACT, 2014; American Statistical Association, 
2014; AAAS, 2015). In addition, as more and more data are 
being collected electronically and stored in open repositories 
(Hug and McNeill, 2008; Kastens et al., 2015), opportunities to 
use authentic data in the classroom are increasing every day.

Yet, despite its importance and ubiquity, the use of authentic 
data in the classroom is limited by the availability of high-qual-
ity classroom resources, appropriate instructor training, and 
research to determine effective teaching strategies for 
developing student data literacy (Picone et al., 2007; Metz, 
2008; Gould et al., 2014; Schultheis and Kjelvik, 2015; Harsh 
and Schmitt-Harsh, 2016; Angra and Gardner, 2017). We are 
currently at the beginning of an exciting shift in science educa-
tion, creating targeted areas for collaboration for science educa-
tors, curriculum developers, programmers, and education 
researchers.

Resource Development and Educator Training
To use data effectively with their students, educators will require 
tools and training. Despite the prevalence of authentic data, 
teachers admit they sometimes still create inauthentic data sets 
to demonstrate a particular data science concept, resulting in 
the use of data that are devoid of context and lacking complex-
ity. Yet these same teachers recognize their students’ excitement 
when they know they are working with authentic data (Schul-
theis and Kjelvik, 2015). Additionally, teachers report that there 
are several limitations to incorporating data-centric activities 
into their classrooms, including the time commitment required 
to fully delve into complex data sets, which becomes particu-
larly daunting when students have little prior experience with 
data analysis and interpretation (Konold et al., 2000).

These reports from teachers point to a need for resource 
development to facilitate the introduction of data into K–12 and 
undergraduate education while also teaching core content. In 
recent years, resource developers have been responding. Many 
promising classroom activities and digital learning environ-
ments are being actively developed to facilitate student interac-
tions with data (see Supplemental Table 1A). As more resources 
are developed, a few key challenges for the field become appar-
ent, including the creation of 1) opportunities for educators, 
curriculum developers, and researchers to work together to 
design the strongest resources applicable to address current 
needs; and 2) a central repository for high-quality, data-rich 
educational resources.

After instructors have identified data sets and materials, 
they are not always confident in their abilities to lead data- 
focused discussions with their students (Konold et al., 2000). 
Historically, training of preservice teachers has not included 
opportunities to work with complex data, resulting in teachers 
who are uncomfortable scaffolding their students’ experiences 
graphing and interpreting data from inquiry (Bowen and Roth, 
2005). Without training, the unique learning opportunities that 
arise from the use of authentic data may not be apparent to 
instructors. Therefore, in addition to resources, instructors will 
require training to adequately prepare them to teach with data, 
including the digital skills necessary to interact with digital data 
(Claro et al., 2018).
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Professional development offerings are a way to highlight 
potential benefits and guide instructors toward best practices 
when using authentic data in the classroom (Cooper et al., 
2015), and workshops should be offered to support instructors 
as they incorporate data literacy into their curricula (Wilson, 
2013). In addition to professional development, there are pro-
fessional and peer-mentoring networks to support instructors as 
they seek to increase their use of data in the classroom (Bonner 
et al., 2017). At the university level, data-literacy programs are 
under development, and libraries are being considered as a key 
player in helping students and instructors build comfort and 
ability to use data (Calzada Prado and Marzal, 2013; Carlson 
et al., 2015). Additionally, field stations and marine laboratories 
can facilitate direct communication between the science com-
munity and educators (Struminger et al., 2018), providing 
opportunities for scientists to share their data and the stories 
behind their research with students and the public (Schultheis 
and Kjelvik, 2015).

Call for Research to Determine Authentic Data 
Best Practices
Just as Schield (2004) argued for further research to determine 
how information literacy, statistical literacy, and data literacy 
are related, researchers need to decipher key similarities and 
differences between quantitative reasoning, data science, and 
data literacy. Specifically, there appears to be considerable over-
lap in desired learning outcomes across fields, such as develop-
ing students’ ability to interpret and use data in their everyday 
lives (Calzada Prado and Marzal, 2013). Similar to the work 
that has taken place in citizen science (Phillips et al., 2018), 
research is necessary to define desired learning outcomes sur-
rounding data use in the classroom, which will inform how 
these interrelated fields can be taught synergistically to improve 
student performance.

Once learning outcomes have been identified, future 
research can determine the best practices for improving data 
literacy for science, technology, engineering, and mathematics 
(STEM) students. Discussions within the science education 
community are ongoing and have resulted in suggested 
approaches for developing data-literacy skills. One idea put 
forth involves providing students with repeated practice using 
data, while prioritizing discussion of why they are collecting 
the data and how the data can be used to answer questions 
they are investigating (Gibson and Mourad, 2018). Addition-
ally, ensuring these data experiences involve a diversity of 
data types and remain connected to the authentic context of 
the data could be crucial in developing student data literacy 
(Schultheis and Kjelvik, 2015). Yet few studies have tested the 
efficacy of educational materials using authentic data (Aikens 
and Dolan, 2014), and we are aware of no studies that com-
pare the effects of authentic and inauthentic data on student 
learning outcomes. To address this need, future research 
should isolate the impact of data authenticity on student data 
literacy and interest and engagement in STEM by manipulat-
ing the use of authentic and inauthentic data resources in the 
classroom.

Additionally, although there are hypothetical advantages 
and disadvantages for working with paper or digital data activ-
ities, we are not aware of any research that documents how 
data-literacy learning opportunities differ between paper or 

digital media. In language literacy, research has demonstrated 
that students experience paper and digital media very differ-
ently, and the use of both might be complementary (Singer and 
Alexander, 2017a,b). Similarly, future research on data literacy 
could study the effects of paper versus digital data experiences 
on the learning opportunities afforded and the depth of student 
discourse when using data.

CONCLUSION
The challenges brought about by data’s increasing role in sci-
ence and society are being met by a shift in science education. 
Through experiences collecting, analyzing, and interpreting 
authentic data, students have the potential to become better 
critical thinkers, increase their scientific content knowledge, 
and understand the value of data for comprehending the natu-
ral world (Mourad et al., 2012; Langen et al., 2014). Despite 
this progress, research is necessary to define learning outcomes 
and best practices when using data in the classroom. Addition-
ally, curricular development and increased accessibility of 
resources is necessary, as instructors lack access to high-quality, 
data-intensive resources and the training necessary to effec-
tively implement such resources. Though these challenges may 
seem daunting, we are currently at the beginning of an exciting 
new phase in science education, one that comes with the oppor-
tunity to increase the data competencies of the next generation 
of scientists, workers, and citizens.

ACCESSING MATERIALS
Websites for data-intensive classroom resources and other 
materials cited in this paper can be found in Supplemental 
Table 1A.
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