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About This Guide  
Many state science standards encourage the use of mathematics and statistics in science education, including 
the newly designed AP and IB sciences courses, the Next Generation Science Standards, and the Common 
Core.  
 
Two high school biology teachers, Paul Strode and Ann Brokaw, conceived this guide to give first-year 
secondary science students a general foundation for performing the data, error, and uncertainty analysis they 
will need in their science education in high school and beyond. This brief guide is not meant to be a textbook 
of statistics. However, this guide will function as a starting point for the inferential statistical tests that 
students may learn as they move into more advanced science courses like biology, chemistry, physics, and 
earth and space science.  
 
The guide is organized in two parts:  
 

 Part 1 is a “cheat sheet” of most of the statistical symbols and equations students will need to perform 
descriptive statistics on the data they generate in their lab activities and the inquiry based 
investigations they perform.  

 

 Part 2 includes the methods to describe the typical or average value of the data, to determine the 
spread of the data, and to quantify the error and uncertainty that are inherent in a sample that is 
taken from a population of possible measurements. Part 2 also gives examples of how students can 
illustrate error and uncertainty in their data in graphical form. 
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Part 1: Statistical Symbols and Basic Equations 
 

Listed below are the universal statistical symbols and equations used in this guide. The calculations can all be 

done using scientific calculators or the formula function in spreadsheet programs. 

𝑁:  Total number of individuals in a population (i.e., the total number of butterflies of a particular species) 

     𝑛:  Total number of individuals in a sample of a population (i.e., the number of butterflies in a net) 

     df: The number of measurements in a sample that are free to vary once the sample mean has been 

calculated; in a single sample, df = 𝑛 – 1 

     𝑥𝑖: A single measurement 

     𝑖:  The 𝑖th observation in a sample 

     : Summation 

     𝑥̅: Sample mean     𝑥̅ = 
∑ 𝑥𝑖

𝑛
 

     𝑠2: Sample variance   𝑠2 = 
∑(𝑥𝑖 − 𝑥̅)2

𝑛 − 1
 

     𝑠: Sample standard deviation  𝑠 = √𝑠2 

     SE:  Sample standard error, or standard error of the mean (SEM) SE = 
𝑠

√𝑛
 

     95% CI: 95% confidence interval  95% CI = 
1.96𝑠

√𝑛
 

 

 

 

  



Mathematics and Statistics in Science Pg. 4 

 

Part 2: Descriptive Statistics Used in Science 
 
It is rarely practical for scientists to record every event or individual in a population of measurements. Instead, 

we typically collect data on a sample of a population and use these data to draw conclusions (or make 

inferences) about the entire population. Statistics is a mathematical discipline that relates to this type of 

analysis. 

One of your first steps in analyzing a small data set is to graph the data and examine the distribution. Figure 1 

shows two graphs of beak measurements taken from two samples of medium ground finches that lived on the 

island of Daphne Major, one of the Galápagos Islands, during a major drought in 1977. The graph on the top 

shows beak measurements of finches that died during the drought. The graph on the bottom shows beak 

measurements of finches that survived the drought.  

Beak Depths of 50 Medium Ground Finches That Did Not Survive the Drought 

 

Beak Depths of 50 Medium Ground Finches That Survived the Drought 

 

 
 
 
 

 

 

 
 

Figure 1: The distributions of beak depth measurements in two groups of medium ground finches  

Notice that the measurements tend to be more or less symmetrically distributed across a range, with most 

measurements around the center of the distribution. This is a characteristic of a normal distribution. The 

statistical methods covered in this guide, except for the measures of average and the range, apply to data that 
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are normally distributed, like the beak measurements above; other types of distributions require either 

different kinds of statistics or transforming data to make them normally distributed. 

Also, in the two graphs, the center and spread of each distribution is different. Descriptive statistics allows you 

to describe and quantify these differences. 

Measures of Average: Mean, Median, and Mode 
A description of a group of observations can include a value for the mean, median, or mode. These are all 

measures of central tendency—in other words, they represent a number close to the center of the 

distribution.  

Mean 

You calculate the mean (also referred to as the average or arithmetic mean) by summing all the data points in 

a data set (ΣX) and then dividing this number by the total number of data points (N): 

 
 
What we want to understand is the mean of the entire population, which is represented by μ. We use the 
sample mean, represented by 𝑥̅, as an estimate of μ.  
 

 
Application in physical science  
Students in a physical science class measured the velocities of eight toy cars of the same type as they travelled 
down a ramp that was angled at 10°. The students recorded their results in Table 1.  
 

Table 1. Velocity of eight cars travelling down a 10° ramp (± 0.05 cm/s) 
 

Car No. 1 2 3 4 5 6 7 8 

Velocity 
(cm/s) 

7.5 10.1 8.3 9.8 5.7 10.3 9.2 8.8 

  
To determine the mean of car velocities, follow these steps: 
 

I. Find the sum of the velocities: 
7.5 + 10.1 + 8.3 + 9.8 + 5.7 + 10.3 + 9.2 + 8.8 = 69.7 cm/s 

 
II. Count the number of velocity measurements: 

There are eight velocity measurements.  
 

III. Divide the sum of the velocities by the number of measurements to compute the mean: 
mean = 69.7 cm/8 = 8.7 cm/s 

 
The mean velocity for this sample of eight cars is 8.7 cm/s and serves as an estimate for the true mean of a 
population of toy cars of this type under these conditions (the 10° ramp). Thus, if students collected data from 
hundreds of toy cars of the same type and graphed the data, the center of the distribution might be around 8.7 
centimeters per second. Note: The above calculation on a calculator will equal 8.7125 cm/s. Since your least 
precise measurement is to the nearest 0.1 cm/s, the mean you report must be to the nearest 0.1 cm/s. 
However, if you plan to do additional calculations with the mean, you can carry all the digits through. 
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Median 

When the data are ordered from the largest to the smallest, the median is the midpoint of the data. It is not 
distorted by extreme values, or even when the distribution is not normal. For this reason, it may be more 
useful for you to use the median as the main descriptive statistic for a sample of data in which some of the 
measurements are extremely large or extremely small.  
 
To determine the median of a set of values, you first arrange them in numerical order from lowest to highest. 
The middle value in the list is the median. If there is an even number of values in the list, then the median is 
the mean of the middle two values. 

 
Application in Chemistry 
Students in a chemistry class were studying clock reactions. The 26 students in the class organized themselves 
into 13 groups of two. Each group mixed a colorless solution of hydrogen peroxide and sulfuric acid with a 
colorless solution containing potassium iodide, sodium thiosulfate, and starch. The groups recorded the time it 
took for their new solution to turn black. Their results are in Table 2.  
 

Table 2. Time for the clock reaction to occur 
 

Group No. 1 2 3 4 5 6 7 8 9 10 11 12 13 

Time 
(sec.) 

31 33 81 33 28 29 33 27 27 34 35 28 32 

 
To determine the median time for the clock reaction to occur, follow these steps: 
 

I. Arrange the time values in numerical order from lowest to highest: 
 

   27, 27, 28, 28, 29, 31, 32, 33, 33, 33, 34, 35, 81 
 

II. Find the middle value. This value is the median: 
 

   median = 32 seconds 
 

In this case, the median is 32 seconds, but the mean is 35 seconds. The mean is larger than the median 

because a very slow reaction distorts the mean in the direction of that large value. In this case, we call that 

very large value an outlier because it lies so far away from the rest of the measurements. Why might one 

group of students have recorded such a large value? Note: If the researchers can determine that the outlier 

was produced naturally and not because of an error in the methods of the investigation, there may be 

something truly unique and interesting going on with that measurement. Sometimes, by investigating the 

outliers, scientists make some of their most interesting discoveries. 

Mode 

The mode is another measure of the average. It is the value that appears most often in a sample of data. In the 
example shown in Table 2, the mode is 33 seconds. 
 
The mode is not typically used as a measure of central tendency in science, but it can be useful in describing 
some distributions. For example, Figure 2 shows a distribution of a sample of body lengths of weaver ant 
workers with two peaks, or modes—called a bimodal distribution. Describing these data with a measure of 
central tendency like the mean or median would obscure this fact.  
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Figure 2: Graph of body lengths of weaver ant workers (Reproduced from 
http://en.wikipedia.org/wiki/File:BimodalAnts.png.)  

 

When to Use Which One 

The purpose of these statistics is to characterize “typical” data from a data set. You use the mean most often 
for this purpose, but it becomes less useful if the data in the data set are not normally distributed. When the 
data are not normally distributed, then other descriptive statistics can give a better idea about the typical 
value of the data set. The median, for example, is a useful number if the distribution is heavily skewed, like the 
mass of the planets in our solar system. Indeed, Jupiter has a mass of 1.9 X 1027 kg and Saturn has a mass of 5.7 
X 1026 kg. Taken together, these two planets make up 92.5% of the mass of all eight planets. Since there is an 
even number of planets in our solar system, the median is determined by calculating the mean of Earth and 
Uranus (the 4th and 5th most massive planets, respectively), which is 4.6 X 1025 kg. Again, the mode is not used 
very frequently in science, but it may be useful in describing some types of distributions—for example, ones 
with more than one peak. 
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Measures of Variability: Range, Standard Deviation, and Variance 
Variability describes the extent to which numbers in a data set diverge from the central tendency. It is a 
measure of how “spread out” the data are. The most common measures of variability are range, standard 
deviation, and variance.  

Range 

The simplest measure of variability in a sample of normally distributed data is the range, which is the 
difference between the largest and smallest values in a set of data. You can use the range for data that are not 
normally distributed. 

 
Application in Earth Science 
Students in an earth science class obtained data on the thickness of the Earth’s ozone layer from monitoring 
sites around the world and recorded their results in Table 3. The thickness of the ozone layer is measured in 
Dobson units (DU). A measurement of less than 220 DU is considered an ozone hole. 
 

Table 3. Thickness of the ozone layer at eight global monitoring stations 
 

Station 
No. 

1 2 3 4 5 6 7 8 

Thickness 
(DU) 

283 245 204 256 260 300 290 305 

 
To determine the range of ozone thickness, follow these steps: 
 

I. Identify the largest and smallest values in the data set: 
largest = 305 DU, smallest = 204 DU 
 

II. To determine the range, subtract the smallest value from the largest value: 
range = 305 DU – 204 DU = 101 DU 

 

Which station has an ozone hole? 

For any data, a larger range value indicates a greater spread of the data—in other words, the larger the range, 

the greater the variability. However, an extremely large or small value in the data set will make the variability 

appear high. The standard deviation provides a more reliable measure of the “true” spread of the data.  

Standard Deviation and Variance  

The standard deviation is the most widely used measure of variability. The sample standard deviation (s) is 
essentially the average of the difference between each measurement in the sample and the sample mean (𝑥). 
The sample standard deviation is an estimate of the standard deviation in the larger population.  
 
The formula for calculating the sample standard deviation follows: 
 

s = √
∑(𝑥𝑖 − 𝑥)2

(𝑛 − 1)
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Calculation Steps 
 

1. Calculate the mean (𝑥) of the sample. 
 
2. Find the difference between each measurement (𝑥i) in the data set and the mean (𝑥) of the entire set: 

(𝑥i − 𝑥) 
 
3. Square each difference to remove any negative values: (𝑥i − 𝑥)2 
 

4. Add up (sum, ) all the squared differences: (𝑥i − 𝑥)2 
 
5. Divide by the degrees of freedom, which is 1 less than the sample size (n – 1) (degrees of freedom are 

explained in its own section on Page 12):  
 

∑(𝑥𝑖 −  𝑥)2

(𝑛 − 1)
 

 
Note that the number calculated at this step provides a statistic called variance (s2). Variance is an important 
measure of variability that is used in certain statistical methods. It is the square of the standard variation. 
 

6. Take the square root to calculate the standard deviation (s) for the sample.  
 
Application in Biology 
You are interested in knowing how tall bean plants (Phaseolus vulgaris) grow in two weeks after planting. You 
plant a sample of 20 seeds (n = 20) in separate pots and give them equal amounts of water and light. After two 
weeks, 17 of the seeds have germinated and have grown into small seedlings (now n = 17). You measure each 
plant from the tips of the roots to the top of the tallest stem. You record the measurements in Table 4 on the 
next page, along with the steps for calculating the standard deviation. 
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Table 4. Plant measurements and steps for calculating the standard deviation 
 

Plant 
No. 

Plant Height 

(mm ± 0.5) 

Step 2: (𝒙i − 𝒙) Step 3: (𝒙i − 𝒙)2 

1 112 (112 – 103) = 9 92 = 81 

2 102 (102 – 103) = (−1) (−1)2 = 1 

3 106 (106 – 103) = 3 32 = 9 

4 120 (120 – 103) = 17 172 = 289 

5 98 (98 – 103) = (−5) (−5)2 = 25 

6 106 (106 – 103) = 3 32 = 9 

7 80 (80 – 103) = (−23) (−23)2 = 529 

8 105 (105 – 103) = 2 22 = 4 

9 106 (106 – 103) = 3 32 = 9 

10 110 (110 – 103) = 7 72 = 49 

11 95 (95 – 103) = (−8) (−8)2 = 64 

12 98 (98 – 103) = (−5) (−5)2 = 25 

13 74 (74 – 103) = (−29) (−29)2 = 841 

14 112 (112 – 103) = 9 92 = 81 

15 115 (115 – 103) = 12 122 = 144 

16 109 (109 – 103) = 6 62 = 36 

17 100 (100 – 103) = (−3) (−3)2 = 9 

Step 1: 
Calculate 

mean. 
𝑥 = 103  

Step 4: ∑(𝑥i − 𝑥)2  
= 2,205 

  Variance (s2) 
𝑆𝑡𝑒𝑝 5: ∑(𝑥i − 𝑥)2/(n – 1) = 

2,205/16 = 138 

  
Standard deviation 

(s) 
Step 6: √𝑠2 

= √138 = 11.7 

 
 
The mean height of the bean plants in this sample is 103 millimeters ± 12 (11.7) millimeters. What does this 
tell us?  
 
In a data set with a large number of continuous measurements that are normally distributed, 68% of the 
measurements are expected to fall within 1 standard deviation from the mean and around 95% of all data 
points lie within 2 standard deviations of the mean on either side (Figure 3). Thus, in this example, if you 
assume that this sample of 17 observations is drawn from a population of measurements that are normally 
distributed, 68% of measurements in the population should fall between 91 and 115 millimeters and 95% of 
the measurements should fall between 79 millimeters and 127 millimeters. 
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Figure 3: For normally distributed data, 68% of data points lie between ±1 standard deviation of the mean and 
95% of data points lie between ±2 standard deviations of the mean.  
 
You can graph the mean and the standard deviation of this sample of bean plants using a bar graph with 
standard deviation as bars on either side of the mean to show the variation of your measurements around 
your estimate of the mean (Figure 4). Standard deviation bars do not reflect the error in the measurements—
this is a common misconception. On the other hand, true error bars based on the standard error of the mean 
and 95% confidence interval reflect the uncertainty in the sample mean when estimating the population 
mean, and they are dependent on sample size. (These statistics are discussed further in “Measures of 
Confidence: Standard Error of the Mean and 95% Confidence Intervals.”) 
 

 
Figure 4: This bar graph shows the mean plant height of a sample of bean plants and an error bar that 
represents ±1 standard deviation. Sixty-eight percent of measurements in this population fall in the range 
indicated by the bar.  
 
Note: Another common misconception is that standard deviation decreases with increasing sample size.  
Standard deviation can either increase or decrease as sample size increases; it just depends on the 
measurements in the sample. If there is a lot of variation in a population, the standard deviation will be large. 
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Understanding Degrees of Freedom 

Calculations of sample estimates, such as the standard deviation and variance, use degrees of freedom instead 
of sample size. The way you calculate degrees of freedom depends on the statistical method you are using, but 
for calculating the standard deviation, it is defined as 1 less than the sample size (n − 1).   
 
To illustrate what this number means, consider the following example. Biologists are interested in the variation 
in leg lengths among grasshoppers. They catch five grasshoppers (𝑛 = 5) in a net and prepare to measure the 
left legs. As the scientists pull grasshoppers one at a time from the net, they have no way of knowing the leg 
lengths until they measure them all. In other words, all five leg lengths are “free” to vary within some general 
range for this particular species. The scientists measure all five leg lengths and then calculate the mean to be 
10 millimeters. They then place the grasshoppers back in the net and decide to pull them out one at a time to 
measure them again. This time, since the biologists already know the mean to be 10, only the first four 
measurements are free to vary within a given range. If the first four measurements are 8, 9, 10, and 12 
millimeters, then there is no freedom for the fifth measurement to vary; it has to be 11. Thus, once they know 
the sample mean, the number of degrees of freedom is 1 less than the sample size, df = 4. 

Measures of Confidence: Standard Error of the Mean and 95% Confidence Interval 
 
The standard deviation provides a measure of the spread of the data from the mean. A different type of 
statistic reveals the uncertainty in the calculation of the mean. The sample mean is not necessarily identical to 
the mean of the entire population. In fact, every time you take a sample and calculate a sample mean, you 
would expect a slightly different value. In other words, the sample means themselves have variability. This 
variability can be expressed by calculating the standard error of the mean (abbreviated as SE𝑥̅ or SEM) or the 
95% confidence interval (95% CI). Indeed, a critical step in making claims in science is to statistically 
determine the level of uncertainty in a claim. 
 
To calculate SE𝑥̅, divide the standard deviation by the square root of the sample size: 
 

                    𝑠 = √
∑(𝑥𝑖− 𝑥)2

(𝑛 − 1)
 

 

                    SE𝑥̅ = 
𝑠

√𝑛
 

 

95% CI = 
1.96𝑠

√𝑛
   (typically rounded to 

2𝑠

√𝑛
.) 

 
Assume that there is a population of a species of anole lizards living on an island of the Caribbean. If you were 
able to measure the length of the hind limbs of every individual in this population and then calculate the 
mean, you would know the value of the population mean. However, there are thousands of individuals, so you 
take a sample of 10 anoles and calculate the mean hind limb length for that sample. Another researcher 
working on that island might catch another sample of 10 anoles and calculate the mean hind limb length for 
this sample, and so on. The sample means of many different samples would be normally distributed. The 
standard error of the mean represents the standard deviation of such a distribution and estimates how close 
the sample mean is to the population mean. The greater the sample size (i.e., 50 rather than 10 anoles), the 
more closely the sample mean will estimate the population mean, and therefore the standard error of the 
mean becomes smaller. 
 
The 95% confidence interval (95% CI) is equivalent to around 2 standard errors of the mean. Because the 
sample means are assumed to be normally distributed, 95% of all sample means should fall between 2 
standard deviations above and below the population mean, estimated by the 95% CI. 
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What these calculations tell you is that you can be 68% confident that the population mean falls within ±1 
standard error of the sample mean and 95% confident that the population mean falls within approximately ±2 
standard errors of the sample mean.  
 
Both SE𝑥̅ and 95% CI can be illustrated as error bars in a bar graph of the means of two or more samples that 
are being compared. Depicting SE𝑥̅ or the 95% CI as error bars in a bar graph provides a clear visual clue to 
the uncertainty of the calculations of the sample means. Note: Unlike standard deviation, both standard error 
and 95% CI decrease with increasing sample size. In other words, the greater the sample size the less the 
uncertainty in the calculations of the sample means. 
 
Application in Agriculture—Example 1 
Seeds of many weed species germinate best in recently disturbed soil that lacks a light-blocking canopy of 
vegetation. Students in an environmental science class hypothesized that weed seeds germinate in response 
to light. To test this hypothesis, the students placed 25 seeds of crofton weed (Ageratina adenophora, an 
invasive species on several continents) in each of 20 petri dishes and covered them with distilled water. They 
placed half the petri dishes in the dark and half in the light. After 72 hours, the students counted the number 
of seeds that had germinated in each dish. The data and calculations of variance, standard deviation, standard 
error of the mean, and 95% confidence interval are shown in Table 5. The students plotted the data as two bar 
graphs showing the standard error of the mean and 95% confidence interval (Figure 5). 
 
Table 5. Number of crofton seeds that germinated after 72 hours in the dark and in the light (number of 
replicates [i.e., sample size, n] = 10) 
 

Petri Dishes Dark (𝒙𝟏) Light (𝒙𝟐) 
Dark 

(𝒙𝒊 − 𝒙𝟏)
2
 

Light 
(𝒙𝒊 − 𝒙𝟐)

2
 

1 and 2 12 18 (12 – 9.6)
2
 = 5.8 (18 – 18.4)

2
 = 0.16 

3 and 4 8 22 (8 – 9.6)
2
 = 2.6 (22 – 18.4)

2
 = 12.96 

5 and 6 15 17 (15 – 9.6)
2
 = 29.1 (17 – 18.4)

2
 = 1.96 

7 and 8 13 23 (13 – 9.6)
2
 = 11.5 (23 – 18.4)

2
 = 21.16 

9 and 10 6 16 (6 – 9.6)
2
 = 13.0 (16 – 18.4)

2
 = 5.76 

11 and 12 4 18 (4 – 9.6)
2
 = 31.4 (18 – 18.4)

2
 = 0.16 

13 and 14 13 22 (13 – 9.6)
2
 = 11.6 (22 – 18.4)

2
 = 12.96 

15 and 16 14 12 (14 – 9.6)
2
 = 19.3 (12 – 18.4)

2
 = 40.96 

17 and 18 5 19 (5 – 9.6)
2
 = 21.1 (19 – 18.4)

2
 = 0.36 

19 and 20 6 17 (6 – 9.6)
2
 = 13.0 (17 – 18.4)

2
 = 1.96 

   ∑ (𝑥𝑖  − 𝑥̅1)
2 

= 158.4 ∑ (𝑥𝑖  − 𝑥̅2)
2
 = 98.4 

Mean (𝑥̅) 𝑥̅1 = 9.6 𝑥̅2 = 18.4 
∑(𝑥𝑖− 𝑥)2

(𝑛 − 1)
 = 

158.4

9
 

∑(𝑥𝑖− 𝑥)2

(𝑛 − 1)
 = 

98.4

9
 

  Variance (𝑠2) 𝑠1
2 = 17.6 𝑠2

2 = 10.93 

Standard deviation 𝑠 =√
∑(𝑥𝑖− 𝑥)2

(𝑛 − 1)
 𝑠 = 4.20 𝑠 = 3.31 

Standard error of the mean SE𝑥̅ = 
𝑠

√𝑛
 SE𝑥̅  = 

4.20

√10
 = 1.33 SE𝑥̅  = 

3.31

√10
 = 1.05 

95% CI = 
𝟐𝒔

√𝒏
 95% CI = 

2(4.20)

√10
 = 2.7 95% CI = 

2(4.74)

√10
 = 2.1 
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Figure 5: Mean number of crofton seeds that germinated after 72 hours in the dark or in the light. The standard 
error of the mean graph shows the SE𝑥̅  as error bars, and the 95% confidence interval graph shows the 95% CI 

as error bars. 
 

The calculations show that although the students don’t know how many seeds of the entire population of 
crofton seeds would germinate in the dark, it is likely to be a number around the sample mean of 9.6 seeds. 
But how confident are they of this estimate? They are 68% confident that the dark treatment population mean 
lies between 8.3 (9.6 − 1.3) and 10.9 (9.6 + 1.3) and that the light treatment population mean lies between 
17.35 and 19.45 seeds. In addition, they are 95% confident that the dark treatment population mean lies 
between 7 and 12.2 seeds and the light treatment population mean lies between 16.3 and 21.5 seeds. 
 
Note: By looking at the bar graphs, you can see that the means for the light and dark treatments are different. 
Can you tell if the differences are statistically significant? If the standard error bars and 95% CI bars overlap, 
then it is likely that the differences are not statistically significant. In this case, the standard error bars do not 
overlap; however, this does not necessarily mean that the difference between the means is statistically 
significant (truly different). On the other hand, the fact that the 95% confidence interval error bars do not 
overlap strongly suggests that the two sample means are significantly different. An additional statistical test, 
the Student’s t-test, is required to be sure. 
 
Application in Physiology—Example 2 
A teacher had five students in a physical education class write their names on the board, first with their 
dominant hands and then with their nondominant hands. The rest of the class observed that the students 
wrote more slowly and with less precision with the nondominant hand than with the dominant hand. The 
teacher then asked the class to explain their observations by developing testable hypotheses. They 
hypothesized that the dominant hand was better at performing fine motor movements than the nondominant 
hand. The class tested this hypothesis by timing (in seconds) how long it took each student to break 20 
toothpicks with each hand. The results of the experiment and the calculations of variance, standard deviation, 
standard error of the mean, and 95% confidence interval are presented in Table 6. The students then 
illustrated the data and uncertainty with two bar graphs, one showing the standard error of the mean and the 
other showing the 95% confidence interval (Figure 6). 

Standard Error of the Mean 95% Confidence Interval 
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Table 6. Number of seconds it took for students to break 20 toothpicks with their nondominant (ND) and 

dominant hands (D) (number of replicates [n] = 14) 

Students 
ND (𝒙𝟏) 

Sec. (± 0.5) 
D (𝒙𝟐) 

Sec. (± 0.5) 
ND 

(𝒙𝒊 − 𝒙𝟏)
2
 

D 
(𝒙𝒊 − 𝒙𝟐)

2
 

Josh 33 37 (33 – 33)
2
 = 0 (37 – 35)

2
 = 4 

Bobby 24 22 (24 – 33)
2
 = 81 (22 – 35)

2
 = 169 

Qing 35 37 (35 – 33)
2
 = 4 (37 – 35)

2
 = 4 

Julie 33 28 (33 – 33)
2
 = 0 (28 – 35)

2
 = 49 

Lisa 42 50 (42 – 33)
2
 = 81 (50 – 35)

2
 = 225 

Akash 36 36 (36 – 33)
2
 = 9 (36 – 35)

2
 = 1 

Hector 31 36 (31 – 33)
2
 = 4 (36 – 35)

2
 = 1 

Viviana 40 46 (40 – 33)
2
 = 49 (46 – 35)

2
 = 121 

Brenda 28 26 (28 – 33)
2
 = 25 (26 – 35)

2
 = 81 

Jane 24 28 (24 – 33)
2
 = 81 (28 – 35)

2
 = 49 

Asa 23 22 (23 – 33)
2
 = 100 (22 – 35)

2
 = 169 

Eli 44 52 (44 – 33)
2
 = 121 (52 – 35)

2
 = 289 

Adee 35 29 (35 – 33)
2
 = 4 (29 – 35)

2
 = 36 

Jenny 36 37 (36 – 33)
2
 = 9 (37 – 35)

2
 = 4 

   ∑ (𝑥𝑖  − 𝑥̅1)
2 

= 568 ∑ (𝑥𝑖  − 𝑥̅2)
2
 = 1,200 

Mean (𝑥̅) 𝑥̅1 = 33 𝑥̅2 = 35 
∑ (𝑥𝑖 − 𝑥̅1)2 

𝑛 − 1
 = 

568

13
 

∑ (𝑥𝑖 − 𝑥̅2)2 

𝑛 − 1
 = 

1,200

13
 

  Variance (𝑠2) 𝑠1
2 = 44 𝑠2

2 = 92 

Standard deviation 𝑠 =√
∑(𝑥𝑖− 𝑥)2

(𝑛 − 1)
 𝑠 = 6.6 𝑠 = 9.6 

Standard error of the mean SE𝑥̅ = 
𝒔

√𝒏
 SE𝑥̅  = 

6.6

√14
 = 1.8 SE𝑥̅  = 

9.6

√14
 = 2.6 

95% CI = 
𝟐𝒔

√𝒏
 95% CI = 

2(6.84)

√14
 = 3.5 95% CI = 

2(9.6)

√14
 = 5.1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 6: Mean number of seconds for students to break 20 toothpicks with their nondominant hands (ND) and 
dominant hands (D). The standard error of the mean graph shows the SE𝑥̅ as error bars, and the 95% confidence interval 
graph shows the 95% CI as error bars. 

 

Standard Error of the Mean 95% Confidence Interval 
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The calculations show that students can be 68% confident that the population mean for the nondominant 
hand treatment lies within 31.2 seconds (33 − 1.8) and 34.8 seconds (33 + 1.8). Likewise, for the dominant 
hand, students can be 68% confident that the population mean falls within 32.4 and 37.6 seconds.  
 
Students are 95% confident that the population mean for the nondominant hands falls somewhere between 
29.5 seconds (33 – 3.5) and 36.5 seconds (33 + 3.5) and that the population mean for the dominant hands falls 
somewhere between 29.9 seconds (35 – 5.1) and 40.1 seconds (35 + 5.1).  
 
Note: The fact that the 95% confidence interval error bars for the two sample means overlap, so much so that 
they include the means, suggests that the two means may not be significantly different. Indeed, if a student 
reported that she broke 20 toothpicks with one hand, we could not conclude with confidence whether she 
used her dominant or her nondominant hand because 30 seconds is encompassed by both 95% confidence 
interval bars. 
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